Artigo Revisado por pares

Protic Ionic Liquids as p-Dopant for Organic Hole Transporting Materials and Their Application in High Efficiency Hybrid Solar Cells

2013; American Chemical Society; Volume: 135; Issue: 36 Linguagem: Inglês

10.1021/ja406230f

ISSN

1943-2984

Autores

Antonio Abate, Derek J. Hollman, Joël Teuscher, Sandeep Pathak, Roberto Avolio, Gerardino D’Errico, Giuseppe Vitiello, Simona Fantacci, Henry J. Snaith,

Tópico(s)

Conducting polymers and applications

Resumo

Chemical doping is a powerful method to improve the charge transport and to control the conductivity in organic semiconductors (OSs) for a wide range of electronic devices. We demonstrate protic ionic liquids (PILs) as effective p-dopant in both polymeric and small molecule OSs. In particular, we show that PILs promote single electron oxidation, which increases the hole concentration in the semiconducting film. The illustrated PIL-doping mechanism is compatible with materials processed by solution and is stable in air. We report the use of PIL-doping in hybrid solar cells based on triarylamine hole transporting materials, such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene (spiro-OMeTAD). We show improved power conversion efficiency by replacing lithium salts, typical p-dopants for spiro-OMeTAD, with PILs. We use photovoltage-photocurrent decay and photoinduced absorption spectroscopy to establish that significantly improved device performance is mainly due to reduced charge transport resistance in the hole-transporting layer, as potentiated by PIL-doping.

Referência(s)