Revisão Revisado por pares

A Role for the Aspartyl Protease from the Human Immunodeficiency Virus Type 1 (HIV‐1) in the Orchestration of Virus Assembly

1990; Wiley; Volume: 616; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1990.tb17829.x

ISSN

1749-6632

Autores

Manuel A. Navia, Brian M. McKeever,

Tópico(s)

HIV-related health complications and treatments

Resumo

Annals of the New York Academy of SciencesVolume 616, Issue 1 p. 73-85 A Role for the Aspartyl Protease from the Human Immunodeficiency Virus Type 1 (HIV-1) in the Orchestration of Virus Assembly MANUEL A. NAVIA, MANUEL A. NAVIA Merck Sharp and Dohme Research Laboratories Rahway, New Jersey 07065 Vertex Pharmaceuticals Inc., 40 Allston Street, Cambridge, MA 02139-4211.Search for more papers by this authorBRIAN M. MCKEEVER, BRIAN M. MCKEEVER Merck Sharp and Dohme Research Laboratories Rahway, New Jersey 07065Search for more papers by this author MANUEL A. NAVIA, MANUEL A. NAVIA Merck Sharp and Dohme Research Laboratories Rahway, New Jersey 07065 Vertex Pharmaceuticals Inc., 40 Allston Street, Cambridge, MA 02139-4211.Search for more papers by this authorBRIAN M. MCKEEVER, BRIAN M. MCKEEVER Merck Sharp and Dohme Research Laboratories Rahway, New Jersey 07065Search for more papers by this author First published: December 1990 https://doi.org/10.1111/j.1749-6632.1990.tb17829.xCitations: 25 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Kohl, N. E., E. A. Emini, W. A. Schleif, L. J. Davis, J. C. Heimbach, R. A. F. Dixon, E. M. Scolnick & I. S. Sigal 1988. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 85: 4686–4690. 10.1073/pnas.85.13.4686 CASPubMedWeb of Science®Google Scholar 2 Navia, M. A., P. M. D. Fitzgerald, B. M. McKeever, C.-T. Leu, J. C. Heimbach, W. K. Herber, I. S. Sigal, P. L. Darke & J. P. Springer 1989. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337: 615–620. 10.1038/337615a0 CASPubMedWeb of Science®Google Scholar 3 Wlodawer, A., M. Miller, M. Jaskolski, B. K. Sathyanarayana, E. Baldwin, I. T. Weber, L. M. Selk, L. Clawson, J. Schneider & S. B. H. Kent 1989. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245: 616–621. 10.1126/science.2548279 CASPubMedWeb of Science®Google Scholar 4 Farmerie, W. G., D. D. Loeb, N. C. Casavant & C. A. Hutchison III. 1987. Expression and processing of the AIDS virus reverse transcriptase in Escherichia coli. Science 236: 305–308. 10.1126/science.2436298 CASPubMedWeb of Science®Google Scholar 5 Toh, H., M. Ono, K. Saigo & T. Miyata 1985. Retroviral protease-like sequence in the yeast transposon Tyl. Nature 315: 691. 10.1038/315691a0 CASWeb of Science®Google Scholar 6 Pearl, L. H. & W. R. Taylor 1987. A structural model for the retroviral proteases. Nature 239: 351–354. 10.1038/329351a0 Web of Science®Google Scholar 7 McKeever, B. M., M. A. Navia, P. M. D. Fitzgerald, J. P. Springer, C.-T. Leu, J. C. Heimbach, W. K. Herber, I. S. Sigal & P. L. Darke 1989. Crystallization of the aspartyl protease from the human immunodeficiency virus, HIV-1. J. Biol. Chem. 264: 1919–1921. CASPubMedWeb of Science®Google Scholar 8 Navia, M. A., B. M. McKeever, J. P. Springer, T.-Y. Lin, H. R. Williams, E. M. Fluder, C. P. Dorn Jr. & K. Hoogsteen 1989. Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84Å resolution. Proc. Natl. Acad. Sci. USA 86: 7–11. 10.1073/pnas.86.1.7 CASPubMedWeb of Science®Google Scholar 9 Baldwin, J. J., G. S. Ponticello, P. S. Anderson, M. E. Christy, M. A. Murcko, W. C. Randall, H. Schwam, M. F. Sugrue, J. P. Springer, P. Gautheron, J. Grove, P. Mallorga, M.-P. Viader, B. M. McKeever & M. A. Navia 1989. Thienothiopyran-2-sulfonamides: Novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J. Med. Chem. 32: 2510–2513. 10.1021/jm00132a003 CASPubMedWeb of Science®Google Scholar 10 Navia, M. A., J. P. Springer, T.-Y. Lin, H. R. Williams, R. A. Firestone, J. M. Pisano, J. B. Doherty, P. E. Finke & K. Hoogsteen 1987. Crystallographic study of a beta-lactam inhibitor complex with elastase at 1.84Å resolution. Nature 327: 79–82. 10.1038/327079a0 CASPubMedWeb of Science®Google Scholar 11 DeLucas, L. J., C. D. Smith, H. W. Smith, S. Vija Y-Kumar, S. E. Senadhi, S. E. Ealick, D. C. Carter, R. S. Snyder, P. C. Weber, F. R. Salemme, D. H. Ohlendorf, H. M. Einsphar, L. L. Clancy, M. A. Navia, B. M. McKeever, T. L. Nagabuhushan, G. Nelson, A. McPherson, S. Koszelak, G. Taylor, D. Stammers, K. Powell, G. Darby & C. E. Bugg 1989. Protein crystal growth in microgravity. Science 246: 651–654. 10.1126/science.2510297 CASPubMedWeb of Science®Google Scholar 12 Suguna, K., E. A. Padlan, C. W. Smith, W. D. Carlson & D. R. Davies 1987. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: Implications for a mechanism of actio. Proc. Natl. Acad. Sci. USA 84: 7009–7013. 10.1073/pnas.84.20.7009 CASPubMedWeb of Science®Google Scholar 13 James, M. N. G. & A. R. Sielecki 1983. Structure and refinement of penicillopepsin at 1.8Å resolution. J. Mol. Biol. 163: 299–361. 10.1016/0022-2836(83)90008-6 CASPubMedWeb of Science®Google Scholar 14 Foundling, S. I., J. Cooper, F. E. Watson, A. Cleasby, L. H. Pearl, B. L. Sibanda, A. Hemmings, S. P. Wood, T. L. Blundell, M. J. Valler, C. G. Norey, J. Kay, J. Boger, B. M. Dunn, B. J. Leckie, D. M. Jones, B. Atrash, A. Hallett & M. Szelke 1987. High resolution X-ray analyses of renin-inhibitor-aspartic proteinase complexes. Nature 327: 349–352. 10.1038/327349a0 CASPubMedWeb of Science®Google Scholar 15 James, M. N. G., A. Sielecki, F. Salituro, D. H. Rich & T. Hofmann 1982. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. Proc. Natl. Acad. Sci. USA 79: 6137–6141. 10.1073/pnas.79.20.6137 CASPubMedWeb of Science®Google Scholar 16 Loeb, D. D., R. Swanstrom, L. Everitt, M. Manchester, S. E. Stamper & C. A. Hutchison III. 1989. Complete mutagenesis of the HIV-1 protease. Nature 340: 397–400. 10.1038/340397a0 CASPubMedWeb of Science®Google Scholar 17 Grand, R. J. A. 1989. Acylation of viral and eukaryotic proteins. Biochem. J. 258: 625–638. 10.1042/bj2580625 CASPubMedWeb of Science®Google Scholar 18 Grasberg, B., A. P. Minton, C. DeLisi & H. Metzger 1986. Interaction between proteins localized in membranes. Proc. Natl. Acad. Sci. USA 83: 6258–6262. 10.1073/pnas.83.17.6258 PubMedWeb of Science®Google Scholar 19 Gonda, M. A., F. Wong-Staal, R. C. Gallo, J. E. Clements, O. Narayan & R. V. Gilden 1985. Sequence homology and morphologic similarity of HTLV-III and Visna virus, a pathogenic lentivirus. Science 227: 173–177. 10.1126/science.2981428 CASPubMedWeb of Science®Google Scholar 20 Blundell, T. & L. Pearl 1989. Retroviral proteases, a second front against AIDS. Nature 337: 596–597. 10.1038/337596a0 CASPubMedWeb of Science®Google Scholar 21 Pichuantes, L., M. Babe, P. J. Barr & C. S. Craik 1989. Recombinant HIV-1 protease secreted by Saccharomyces cerevisiae correctly processes myristylated gag polyprotein. Proteins: Struct. Funct. Genet. 6: 324–327. 10.1002/prot.340060315 CASPubMedWeb of Science®Google Scholar 22 Strickler, J. E., J. Gorniak, B. Dayton, T. Meek, M. Moore, V. Magaard, J. Malinowski & C. Debouck 1989. Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli. Proteins: Struct. Funct. Genet. 6: 139–154. 10.1002/prot.340060205 CASPubMedWeb of Science®Google Scholar 23 Jacks, T., M. D. Power, F. R. Masiarz, P. A. Luciw, P. J. Barr & H. E. Varmus 1988. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331: 280–283. 10.1038/331280a0 CASPubMedWeb of Science®Google Scholar 24 Sequence Analysis Software Package of the Genetics Computer Group of the University of Wisconsin Biotechnology Center; Devereux, Haeberli & Smithies. 1984. Nucleic Acids Res 12: 387–395. PubMedWeb of Science®Google Scholar 25 Lowe, D. M., A. Aitken, C. Bradley, G. K. Darby, B. A. Larder, K. L. Powell, D. J. M. Purifoy, M. Tisdale & D. K. Stammers 1988. HIV-1 reverse transcriptase: Crystallization and analysis of domain structure by limited proteolysis. Biochemistry 27: 8884–8889. 10.1021/bi00425a002 CASPubMedWeb of Science®Google Scholar 26 Hizi, A., C. McGill & S. H. Hughes 1988. Expression of soluble, enzymatically active, human immunodeficiency virus reverse transcriptase in Escherichia coli and analysis of mutants. Proc. Natl. Acad. Sci. USA 85: 1218–1222. 10.1073/pnas.85.4.1218 CASPubMedWeb of Science®Google Scholar 27 Klein, M., N. Haeffner-Cavaillon, D. E. Isenman, C. Rivat, M. A. Navia, D.R. Davies & K. J. Dorrington 1981. Expression of biological effector functions by immunoglobulin G molecules lacking the hinge region. Proc. Natl. Acad. Sci. USA 78: 524–528. 10.1073/pnas.78.1.524 CASPubMedWeb of Science®Google Scholar 28 Debouck, C., J. G. Gorniak, J. E. Strickler, T. D. Meek, B. W. Metcalf & M. Rosenberg 1987. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc. Natl. Acad. Sci. USA 84: 8903–8906. 10.1073/pnas.84.24.8903 CASPubMedWeb of Science®Google Scholar 29 Graves, M. C., J. J. Lim, E. P. Heimer & R. A. Kramer 1988. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity. Proc. Natl. Acad. Sci. USA 85: 2449–2453. 10.1073/pnas.85.8.2449 CASPubMedWeb of Science®Google Scholar 30 Leis, J., D. Baltimore, J. M. Bishop, J. Coffin, E. Fleissner, S. P. Goff, S. Oroszlan, H. Robinson, A. M. Skalka, H. M. Temin & V. Vogt 1988. Standardized and simplified nomenclature for proteins common to all retroviruses. J. Virol. 62: 1808–1809. 10.1128/JVI.62.5.1808-1809.1988 CASPubMedWeb of Science®Google Scholar 31 Kyte, J. & R. F. Doolittle 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132. 10.1016/0022-2836(82)90515-0 CASPubMedWeb of Science®Google Scholar Citing Literature Volume616, Issue1AIDS: Anti‐HIV Agents, Therapies, and VaccinesDecember 1990Pages 73-85 ReferencesRelatedInformation

Referência(s)