Roots: The history of the DNA heteroduplex
1990; Wiley; Volume: 12; Issue: 3 Linguagem: Inglês
10.1002/bies.950120309
ISSN1521-1878
Autores Tópico(s)Plant Disease Resistance and Genetics
ResumoBioEssaysVolume 12, Issue 3 p. 133-142 Feature Roots: The history of the DNA heteroduplex Robin Holliday, Robin HollidaySearch for more papers by this author Robin Holliday, Robin HollidaySearch for more papers by this author First published: March 1990 https://doi.org/10.1002/bies.950120309Citations: 10AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Watson, J. D. and Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature 171, 737–738. 2 Watson, J. D. and Crick, F. H. C. (1953). Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967. 3 Levinthal, C. (1954). Recombination in phage T2: its relationships to heterozygosis and growth. Genetics 39, 169–184. 4 Stahl, F. W. (1979). Genetic Recombination: Thinking about it in Phage and Fungi. San Francisco, W. H. Freeman. 5 Platt, J. R. (1955). Possible separation of intertwined nucleic acid chains by transfer twist. Proc. Natl. Acad. Sci. USA 41, 181–183. 6 Pontecorvo, G. (1958). Trends in Genetic Analysis. New York: Columbia University Press. 7 Pritchard, R. H. (1955). The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9, 343–371. 8 Benzer, S. (1955). Fine structure of a genetic region in bacteriophage. Proc. Natl. Acad. Sci. 41, 344–354. 9 Lindegren, C. C. (1953). Gene conversion in Saccharomyces. J. Genet. 51, 625–637. 10 Mitchell, M. B. (1955). Aberrant recombination of pyrimidine mutants of Neurospora. Proc. Natl. Acad. Sci. USA 41, 215–220. 11 Lederberg, J. (1955). Recombination mechanisms in bacteria. J. Cell. Comp. Physiol. 45, 75–107. 12 Delbruck, M. and Stent, G. S. (1957). On the mechanism of DNA replication. In The Chemical Basis of Heredity, edited by W. D. McElroy, and B. Glass. Baltimore: The John Hopkins Press, pp. 699–736. 13 Microbial Genetics Symposium. Soc. Gen. Microbiol. 10 Cambridge University Press. 14 Roman, H. (1956). Studies of gene mutation in Saccharomyces. Cold Spring Harb. Symp. Quant. Biol. 21, 175–183. 15 Holliday, R. (1962). Mutation and replication in Ustilago maydis. Genet. Res. 3, 472–486. 16 Fogel, S. and Mortimer, R. K. (1970). Fidelity of meiotic gene conversion in yeast. Mol. Gen. Genet. 109, 117–185. 17 Whitehouse, H. L. K. (1963). A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature 199, 1034–1040. 18 Lissouba, P., Mousseau, J., Rizet, G. and Rossignol, J. L. (1962). Fine structure of genes in the ascomycete Ascobolus immersus. Adv. Genet. 11, 343–380. 19 Siddiqi, O. H. (1963). The fine genetic structure of the pabaI region of Aspergillus nidulans. Genet. Res. 3, 69–89. 20 Murray, N. E. (1963). Polarized recombination and fine structure within the me-2 gene of Neurospora crassa. Genetics 48, 1163–1183. 21 Holliday, R. (1964). A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304. 22 Setlow, R. B. and Carrier, W. L. (1964). The disappearance of thymine dimers from DNA: an error correction mechanism. Proc. Natl. Acad. Sci. USA 51, 226–231. 23 Boyce, R. P. and Howard Flanders, P. (1964). Release of ultra-violet light-induced thymine dimers from DNA in E. coli K12. Proc. Natl. Acad. Sci. USA 51, 293–300. 24 Holliday, R. (1968). Genetic recombination in fungi. In Replication and Recombination of Genetic Material, edited by W. J. Peacock and R. D. Brock. Canberra: Australian Academy of Science, pp. 157–174. 25 Fincham, J. R. S. and Holliday, R. (1970). An explanation of fine structure map expansion in terms of excision repair. Mol. Gen. Genet. 109, 309–322. 26 Howard Flanders, P., Rupp, W. D., Wilkins, B. M. and Cole, R. S. (1968). DNA replication and recombination after UV irradiation. Cold Spring Harb. Symp. Quant. Biol 33, 195–205. 27 Clark, A. J. and Margulies, A. D. (1965). Isolation and characterisation of recombination-deficient mutants of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 53, 451–459. 28 Holliday, R. (1965). Radiation sensitive mutants of Ustilago maydis. Mutant. Res. 2, 557–559. 29 Holliday, R. (1967). Altered recombination frequencies in radiation sensitive strains of Ustilago maydis. Mutat. Res. 4, 275–288. 30 Holliday, R., Halliwell, R. E., Evans, M. W. and Powell, V. (1976). Genetic characterisation of recI, a mutant of Ustilago maydis defective in repair and recombination. Genet. Res. 27, 413–453. 31 Holliday, R., Taylor, S. Y., Kmiec, E. B. and Holloman, W. K. (1984). Biochemical characterisation of recI mutants and the genetic control of recombination in Ustilago maydis. Cold Spring Harb. Symp. Quant. Biol. 49, 669–673. 32 Meselson, M. (1964). On the mechanism of genetic recombination between DNA molecules. J. Mol. Biol. 9, 734–745. 33 Emerson, S. (1969). Linkage and recombination at the chromosome level. In Genetic Organisation, edited by E. W. Caspari and A. W. Ravin. New York: Academic Press, Vol. I, pp. 267–360. 34 Sigal, N. and Alberts, B. (1972). Genetic recombination: the nature of a crossed strand exchange between two homologous DNA molecules. J. Mol. Biol. 71, 789–793. 35 Sobell, H. M. (1972). Molecular mechanism for genetic recombination. Proc. Natl. Acad. Sci. USA 69, 2483–2487. 36 Broker, T. R. and Lehman, I. R. (1971). Branched DNA molecules: intermediates in T4 recombination. J. Mol. Biol. 60, 131–149. 37 Sobell, H. M. (1974). Concerning the stereochemistry of strand equivalence in genetic recombination. In Mechanisms in Recombination, edited by R. F. Grell. New York: Plenum, Press, pp. 433–438. 38 Kallenbach, N. R., Rong-Ine, M. and Seeman, N. C. (1983). An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831. 39 Duckett, D. R., Murchie, A. I. H., Dieckmann, S., Von Kitzing, E., Kemper, B. and Lilley, D. M. J. (1988). The structure of the Holliday junction and its resolution. Cell 55, 79–89. 40 Valenzuela, M. and Inman, R. (1975). Visualization of a novel junction in bacteriophage λ DNA. Proc. Natl. Acad. Sci. USA 72, 3024–3028. 41 Benbow, R. M., Zuccarelli, A. J. and Sinsheimer, R. L. (1975). Recombinant DNA molecules of bacteriophage øX174. Proc. Natl. Acad. Sci. USA 72, 235–239. 42 Potter, H. and Dressler, D. (1976). On the mechanism of recombination: electron microscope observation of recombination intermediates. Proc. Natl. Acad. Sci. USA 73, 3000–3004. 43 Meselson, M. J. and Radding, C. M. (1975). A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72, 359–361. 44 Holliday, R. (1974). Molecular aspects of genetic exchange and gene conversion. Genetics 78, 273–287. 45 Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. B. and Stahl, F. W. (1983). The double strand break model for recombination. Cell 33, 25–35. 46 Lamb, B. C. (1987). Tests of double strand gap repair as a major source of meiotic gene conversion in fungi. Heredity 59, 63–72. 47 Resnick, M. A. (1976). The repair of double strand breaks in DNA: a model involving recombination. J. Theoret. Biol. 59, 76–106. 48 Cox, M. M. and Lehman, I. R. (1987). Enzymes of general recombination. Ann. Rev. Biochem. 56, 225–262. 49 Das Gupta, C., Wu, A. M., Kahn, R., Cunningham, R. P. and Radding, C. M. (1981). Concerted strand exchange and formation of Holliday structures by E. coli recA protein. Cell 25, 507–516. 50 Mizuuchi, K., Kemper, B., Hays, J. and Weisberg, A. W. (1982). T4 endonuclease VII cleaves Holliday structures. Cell 29, 357–365. 51 Craig, N. L. (1988). The mechanism of conservative site-specific recombination. Ann. Rev. Genet. 22, 77–105. 52 Champoux, J. J. (1977). Renaturation of complementary single-stranded circles: complete rewinding facilitated by the DNA untwisting enzyme. Proc. Natl. Acad. Sci. USA 74, 5329–5332. 53 McGavin, S. (1971). Models of specifically paired like (homologous) nucleic acid structures. J. Mol. Biol. 55, 293–298. 54 Wilson, J. H. (1979). Nick free formation of reciprocal heteroduplexes: a simple solution to the topological problem. Proc. Natl. Acad. Sci. USA 76, 3641–3645. 55 Wang, A. H. J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., Van Boom, J. H., Van Der Marel, G. and Rich, A. (1979). Molecular structure of a left-handed double helical fragment at atomic resolution. Nature 282, 680–686. 56 Holloman, W. K. (1988). Homologouus pairing promoted by the Ustilago rec1 protein. In Nucleic Acids and Molecular Biology, edited by F. Eckstein and D. M. Lilley. Berlin: Springer-Verlag, pp. 198–205. 57 Pohl, F. M. (1969). Ein modell der DNA-struktur. Naturwissenschaften 54, 616. 58 Holliday, R. (1989). Untwisting B-Z DNA. Trends in Genetics 5, 355–356. Citing Literature Volume12, Issue3March 1990Pages 133-142 ReferencesRelatedInformation
Referência(s)