Regional hydrogeology of the Silurian and Ordovician sedimentary rock underlying Niagara Falls, Ontario, Canada
1988; Elsevier BV; Volume: 104; Issue: 1-4 Linguagem: Inglês
10.1016/0022-1694(88)90166-7
ISSN1879-2707
AutoresKentner S. Novakowski, Patricia A. Lapcevic,
Tópico(s)Karst Systems and Hydrogeology
ResumoDue to concern over the potential for widespread groundwater contamination in the sedimentary rock underlying the Niagara Falls area, this study was done to investigate the hydrogeology of the Silurian and Ordovician stratigraphy underlying the Upper Niagara River and the Eastern Niagara Peninsula. Seven boreholes (up to 150 m deep) were drilled, instrumented with multiple packer casing, tested for permeability, sampled for inorganic and organic solutes and monitored for hydraulic head to provide data for a conceptual model of regional groundwater flow. Results show that there are at least three distinct groundwater flow regimes in the bedrock. The uppermost regime consists of fracture zones in the Guelph and Lockport Formations, within which hydraulic conductivity, hydraulic head measurements and geochemical analyses indicate active groundwater circulation primarily discharging towards the Niagara Gorge and Escarpment. Underlying the Lockport Formation are an overpressured (high hydraulic head) regime in the Clinton-Upper Cataract-Lower Queenston Formation and an underpressured (low hydraulic head) regime in the Lower Cataract-Upper Queenston Formation. In both regimes, geochemical analyses and permeability measurements indicate very old and saline groundwater which probably has undergone minimal migration since pre-Pleistocene time. The implication based on the study so far, is that potential groundwater contamination below the bottom of the Lockport Formation is probably not significant in the Niagara Falls area except adjacent to the Niagara Gorge where vertical permeability in the lower flow regimes may be enhanced.
Referência(s)