Diabetic Nephropathy: Hemodynamic Basis and Implications for Disease Management
1989; American College of Physicians; Volume: 110; Issue: 10 Linguagem: Inglês
10.7326/0003-4819-110-10-795
ISSN1539-3704
AutoresRobert H. Noth, Andrzej S. Królewski, George A. Kaysen, Timothy W. Meyer, Morris Schambelan,
Tópico(s)Chronic Kidney Disease and Diabetes
ResumoDavis Conference15 May 1989Diabetic Nephropathy: Hemodynamic Basis and Implications for Disease ManagementRobert H. Noth, MD, Andrzej S. Krolewski, MD, PhD, George A. Kaysen, MD, PhD, Timothy W. Meyer, MD, Morris Schambelan, MDRobert H. Noth, MD, Andrzej S. Krolewski, MD, PhD, George A. Kaysen, MD, PhD, Timothy W. Meyer, MD, Morris Schambelan, MDAuthor, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-110-10-795 SectionsAboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail ExcerptNew evidence shows that systemic and intrarenal hemodynamic abnormalities are major factors in the initiation and progression of diabetic nephropathy. Genetic predisposition to elevated systemic blood pressure may contribute to its development. Glomerular vasodilation and hyperfiltration, mediated in part by prostaglandins, may play a role in glomerular damage early in the course of diabetes, but clinical studies are limited. The development of more sensitive assays for albuminuria now allows early diagnosis of incipient nephropathy in the "microalbuminuria" phase. Treatment during this phase with antihypertensive agents, including angiotensin-converting enzyme inhibitors, or with dietary protein restriction, can decrease the degree of albuminuria,...References1. Abuelo J. Proteinuria: diagnostic principles and procedures. Ann Intern Med. 1983;98:186-91. LinkGoogle Scholar2. KussmanGoldsteinGleason MHR. The clinical course of diabetic nephropathy. JAMA. 1976;236:1861-3. CrossrefMedlineGoogle Scholar3. FabreBalantDayerFoxVernet JLPHA. The kidney in maturity onset diabetes mellitus: a clinical study of 510 patients. Kidney Int. 1982;21:730-8. CrossrefMedlineGoogle Scholar4. Friedman E. Diabetic nephropathy: strategies in prevention and management. Kidney Int. 1982;21:780-91. CrossrefMedlineGoogle Scholar5. Mogensen C. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310:356-60. CrossrefMedlineGoogle Scholar6. RosenstockRaskin JP. Early diabetic nephropathy: assessment and potential therapeutic interventions. Diabetes Care. 1986;9:529-45. CrossrefMedlineGoogle Scholar7. MogensenChristensenVittinghus CCE. The stages in diabetic renal disease: with emphasis on the stage of incipient nephropathy Diabetes. 1983;32(suppl 2):64-78. CrossrefMedlineGoogle Scholar8. DeckertFeldt-RasmussenMathiesenBaker TBEL. Pathogenesis of incipient nephropathy: a hypothesis. Diabetic Nephropathy. 1984;3:83-8. Google Scholar9. VibertiMackintoshKeen GDH. Determinants of the penetration of proteins through the glomerular barrier in insulin-dependent diabetes mellitus. Diabetes. 1983;32(suppl 2):92-5. CrossrefMedlineGoogle Scholar10. KrolewskiWarramChristliebBusickKahn AJAEC. The changing natural history of nephropathy in type I diabetes. Am J Med. 1985;78:785-94. CrossrefMedlineGoogle Scholar11. AndersenChristiansenAndersenKreinerDeckert AJJST. Diabetic nephropathy in Type I (insulin-dependent) diabetes: an epidemiologic study. Diabetologia. 1983;25:496-501. CrossrefMedlineGoogle Scholar12. SeaquistGoetzBarbosaRich EFJS. Evidence for genetic susceptibility to diabetic nephropathy [Abstract]. Diabetes. 1987;36(suppl 1):105A. Google Scholar13. GundersenOsterby HR. Glomerular size and structure in diabetes mellitus: II. Late abnormalities. Diabetologia. 1977;13:43-8. CrossrefMedlineGoogle Scholar14. MauerSteifesEllisSutherlandBrownGoetz SMEDDF. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74:1143-55. CrossrefMedlineGoogle Scholar15. KillenEbiharaMartinOrtolaBrenner PIGFB. mRNA levels for laminin and collagen IV chains are elevated in diabetic kidneys [Abstract]. Kidney Int. 1987;31:171. Google Scholar16. FessierDuncanFessierSaIoTryggvason LKJTK. Characterization of the procollagen IV cleavage products produced by a specific tumor collagenase. J Biol Chem. 1984;259:9783-9. CrossrefMedlineGoogle Scholar17. HostetterRennkeBrenner THB. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med. 1982;72:375-80. CrossrefMedlineGoogle Scholar18. Brenner B. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int. 1983;23:647-55. CrossrefMedlineGoogle Scholar19. Blythe W. Natural history of hypertension in renal parenchymal disease. Am J Kidney Dis. 1985;5:A50-6. CrossrefMedlineGoogle Scholar20. DerbyLaffelKrolewski LLA. Risk of diabetic nephropathy declines with age in type I (insulin-dependent) diabetes [Abstract]. Diabetologia. 1988;31:485A. Google Scholar21. JensenBorch-JohnsenDeckert TKT. Changes in blood pressure and renal function in patients with Type I (insulin-dependent) diabetes mellitus prior to clinical diabetes nephropathy. Diabetes Res. 1987;4:159-62. MedlineGoogle Scholar22. KrolewskiCannessaWarram AMJ. Predisposition to hypertension in (insulin-dependent) diabetes mellitus. N Engl J Med. 1988;318:140-5. CrossrefMedlineGoogle Scholar23. VibertiKeenWiseman GHM. Raised arterial pressure in parents of diabetic patients with proteinuria. Br Med J. 1987;295:515-7. CrossrefMedlineGoogle Scholar24. MangiliBendingScottLiGuptaViberti RJGLAG. Increased sodium-lithium counter transport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med. 1988;318:146-50. CrossrefMedlineGoogle Scholar25. GuytonColemanNormanYoung ATRD. Mechanisms of essential hypertension. In: Guyton AC, ed. Arterial Pressure and Hypertension. Philadelphia: W.B. Saunders; 1980:457-69. Google Scholar26. CurtisLukeDustan JRH. Remission of essential hypertension after renal transplantation. N Engl J Med. 1983;309:1009-15. CrossrefMedlineGoogle Scholar27. UnedaFujishimaFujiki SSY. Renal hemodynamics and the renin-angiotensin system in adolescents genetically predisposed to essential hypertension. J Hypertens. 1984;2(suppl 3):S437-9. Google Scholar28. BlackshearGarnieWilliamsHarringtonHollenberg JDGDN. Exaggerated renal vasodilator response to calcium entry blockade in first-degree relatives of essential hypertensive subjects. Hypertens. 1987;9:384-9. CrossrefMedlineGoogle Scholar29. WilliamsHollenberg GN. "Sodium-sensitive" essential hypertension. Emerging insights into pathogenesis and therapeutic implications. Contemp Nephrol. 1985;3:303-31. Google Scholar30. MarreLeblancSuarezGuyenneMenardPassa MHLTJP. Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. JBr Med J 1987;294:1448-52. CrossrefMedlineGoogle Scholar31. EllisSteffesGoetzSutherlandMauer EMFDS. Glomerular filtration surface in Type I diabetes mellitus. Kidney Int. 1986;29:889-94. CrossrefMedlineGoogle Scholar32. HasslacherStechWahlRitz CWPE. Blood pressure and metabolic control as risk factors for nephropathy in Type I (insulin-dependent) diabetes. Diabetologia. 1985;28:6-11. CrossrefMedlineGoogle Scholar33. LaffelKrolewskiRandWarramChristliebD'Elia LALJAJ. The impact of blood pressure on renal function in insulin-dependent diabetes [Abstract]. Kidney Int. 1987;31:207. Google Scholar34. BaldwinNeugarten DJ. Treatment of hypertension in renal disease. Am J Kidney Dis. 1985;5:A57-70. CrossrefMedlineGoogle Scholar35. Raij L. Role of hypertension in progressive glomerular injury in glomerulonephritis. Hypertension. 1986;8(suppl I):I30-3. MedlineGoogle Scholar36. Mogensen C. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J 1982;285:685-8. CrossrefMedlineGoogle Scholar37. BjorckNybergMulecGranerusHerlitzAurell SGHGHM. Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy. Br Med J. 1986;293:471-4. CrossrefMedlineGoogle Scholar38. ParvingAndersenSmidtHommelMathiesenSvendsen HAUEEP. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J. 1987;294:1443-7. CrossrefMedlineGoogle Scholar39. Borch-JohnsenKragh-AndersenDeckert KPT. The effect of proteinuria on relative mortality in type I (insulin-dependent) diabetes mellitus. Diabetologia. 1985;28:590-6. CrossrefMedlineGoogle Scholar40. KrolewskiKosinskiWarram AEJ. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol. 1987;59:750-5. CrossrefMedlineGoogle Scholar41. LaffelLaffelValsania LGP. Diabetic nephropathy is an independent risk factor for cardiovascular death [Abstract]. Diabetes. 1987;36(suppl 1):203A. Google Scholar42. JensenBorch-JohnsenKofoed-EnevoldsenDeckert TKAT. Coronary heart disease in young type I (insulin-dependent) diabetic patients with and without diabetic nephropathy: incidence and risk factors. Diabetologia. 1987;30:144-8. CrossrefMedlineGoogle Scholar43. VanniniCiavarellaFlammini PAM. Lipid abnormalities in insulin-dependent diabetic with albuminura. Diabetes Care. 1984;7:151-4. CrossrefMedlineGoogle Scholar44. NestelFidgeTan PNM. Increased lipoprotein-remnant formation in chronic renal failure. N Engl J Med. 1982;307:329-33. CrossrefMedlineGoogle Scholar45. Kofoed-EnevoldsenBorch-JohnsenKreinerNerupDeckert AKSJT. Declining incidence of persistent proteinuria in Type I (insulin-dependent) diabetic patients in Denmark. Diabetes. 1987;36:205-9. CrossrefMedlineGoogle Scholar46. Maack T. Renal handling of low molecular weight proteins. Am J Med. 1975;58:57-64. CrossrefMedlineGoogle Scholar47. MogielnickiWaldmannStrober RTW. Renal handling of low molecular weight proteins: I. L-chain metabolism in experimental renal disease. J Clin Invest. 1971;50:901-9. CrossrefMedlineGoogle Scholar48. KaysenMyersCouserRabkinFelts GBWRJ. Mechanisms and consequences of proteinuria. Lab Invest. 1986;54:479-98. MedlineGoogle Scholar49. DeenBridgesBrennerMyers WCBB. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 1985;249:F374-89. MedlineGoogle Scholar50. BaldamusGalaskeEisenbachKrauseStolte CRGHH. Glomerular protein filtration in normal and nephrotic rats: a micropuncture study. Contrib Nephrol. 1975;1:37-49. CrossrefMedlineGoogle Scholar51. MogensenChristiansen CC. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311:89-93. CrossrefMedlineGoogle Scholar52. SilverDawnayLandonCartel AAJW. Immunoassays for low concentrations of albumin in urine. Clin Chem. 1986;32:1301-6. CrossrefGoogle Scholar53. NathanRosenbaumProtasowicki DCD. Single-void urine samples can be used to estimate quantitative microalbuminuria. Diabetes Care. 1987;10:414-8. CrossrefMedlineGoogle Scholar54. VibertiJarrettMahmudHillArgyropoulousKeen GRURAH. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;1:1430-2. CrossrefMedlineGoogle Scholar55. MathiesenOxenbollJohansenSvendsenDeckert EBKPT. Incipient nephropathy in Type I (insulin-dependent) diabetes. Diabetologia. 1984;26:406-10. CrossrefMedlineGoogle Scholar56. Osterby R. Basement membrane morphology in diabetes mellitus. In: Ellenberf M, Rifkin H, eds. Diabetes Mellitus: Theory and Practice. 3rd ed. New York: Medical Examination Publishing; 1983:323-41. Google Scholar57. MaackJohnsonKauFigueiredoSigulem TVSJD. Renal filtration, transport, and metabolism of low-molecular weight proteins: a review. Kidney Int. 1979;16:251-70. CrossrefMedlineGoogle Scholar58. BrennerBaylisDeen BCW. Transport of molecules across renal glomerular capillaries. Physiol Rev. 1976;56:502-34. CrossrefMedlineGoogle Scholar59. DeenBridgesBrenner WCB. Biophysical basis of glomerular permselectivity. J Membr Biol. 1983;71:1-10. CrossrefMedlineGoogle Scholar60. MichelsDavidmanKeane LMW. Glomerular permeability to neutral and anionic dextrans in experimental diabetes. Kidney Int. 1982;21:699-705. CrossrefMedlineGoogle Scholar61. MeyersWinetzChuiMichaels BJFA. Mechanisms of proteinuria in diabetic nephropathy: a study of glomerular barrier function. Kidney Int. 1982;21:633-41. CrossrefMedlineGoogle Scholar62. Rennke H. Structural alterations associated with glomerular hyperfiltration. In: Mitch WE, Brenner BM, Stein JH, eds. The Progressive Nature of Renal Disease. New York: Churchill Livingstone; 1988:111-32. Google Scholar63. YoshiokaMitaraiKonDeenRennkeIchikawa TTVWHI. Role for angiotensin II in an overt functional proteinuria. Kidney Int. 1986;30:538-45. CrossrefMedlineGoogle Scholar64. TagumaKitamotoFutaki YYG. Effect of Captopril on heavy proteinuria in azotemic diabetics. N Engl J Med. 1985;313:1617-20. CrossrefMedlineGoogle Scholar65. ParvingHommelSmidt HEU. Protection of kidney function and decrease in albuminuria by Captopril in insulin dependent diabetics with nephropathy. Br Med J. 1988;297:1086-91. CrossrefMedlineGoogle Scholar66. MarreChatellierLeblancGuyenneMenardPassa MGHTJP. Prevention of diabetic nephropathy with enalapril in normotensive diabetics with microalbuminuria. Br Med J. 1988;297:1092-5. CrossrefMedlineGoogle Scholar67. PurkersonHoffstenKlahr MPS. Pathogenesis of the glomerulopathy associated with renal infarction in rats. Kidney Int. 1976;9:407-17. CrossrefMedlineGoogle Scholar68. SheaRaskovaMorrison SJA. A stereological study of glomerular hypertrophy in the subtotally nephrectomized rat. Am J Pathol. 1978;90:201-10. MedlineGoogle Scholar69. ShimamuraMorrison TA. A progressive glomerulosclerosis occurring in partial five-sixths nephrectomy. Am J Pathol. 1975;79:95-106. MedlineGoogle Scholar70. HostetterOlsonRennkeVenkatachalamBrenner TJHMB. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85-93. MedlineGoogle Scholar71. Premen A. Potential mechanisms mediating postprandial renal hyperemia and hyperfiltration. FASEB J. 1988;2:131-7. CrossrefMedlineGoogle Scholar72. MeyerIchikawaZatzBrenner TIRB. The renal hemodynamic response to amino acid infusion in the rat. Trans Assoc Am Physicians. 1983;96:76-83. MedlineGoogle Scholar73. CastellinoCodaDeFronzo PBR. Effects of amino acid infusion on renal hemodynamics in humans. Am J Physiol. 1986;251:F132-40. MedlineGoogle Scholar74. KrishnaNowellMiller GGE. Protein-induced glomerular hyperfiltration: role of hormonal factors. Kidney Int. 1988;33:578-83. CrossrefMedlineGoogle Scholar75. HirschbergZipserSlomowitzKopple RRLJ. Glucagon and prostaglandins are mediators of amino acid-induced rise in renal hemodynamics. Kidney Int. 1988;33:1147-55. CrossrefMedlineGoogle Scholar76. PremenHallSmith AJM. Postprandial regulation of renal hemodynamics: role of pancreatic glucagon. Am J Physiol. 1985;248:F656-62. MedlineGoogle Scholar77. KroustrupGundersenOsterby JHR. Glomerular size and structure in diabetes mellitus: III. Early enlargement of the capillary surface. Diabetologia. 1975;13:207-10. CrossrefGoogle Scholar78. ZatzMeyerRennkeBrenner RTHB. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci USA. 1985;82:5963-7. CrossrefMedlineGoogle Scholar79. ZatzDunnMeyerAndersonRennkeBrenner RRTSHB. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986;77:1925-30. CrossrefMedlineGoogle Scholar80. StalderSchmidAndres GRG. La funzione renale nel diabete mellito. Ras Fisiopat Clin Ter. 1952;24:373-410. MedlineGoogle Scholar81. HutchisonSchambelanKaysen FMG. Modulation of albuminuria by dietary protein and converting enzyme inhibition. Am J Physiol. 1987;253:F719-25. MedlineGoogle Scholar82. SlomowitzHirschbergKopple LRJ. Captopril augments the renal response to an amino acid infusion in diabetic adults. Am J Physiol. 1988;255:F755-62. MedlineGoogle Scholar83. BankKloseAynedjianNguyenSablay NRHDL. Evidence against increased glomerular pressure initiating diabetic nephropathy. Kidney Int. 1987;31:898-905. CrossrefMedlineGoogle Scholar84. Spiro R. Search for a biochemical basis of diabetic microangiopaathy. Diabetologia. 1976;12:1-14. CrossrefMedlineGoogle Scholar85. VibertiWisemanMackintoshJarrettKeen GMDRH. Microalbuminuria and marginal blood pressure changes in insulin-dependent diabetes. Diabetic Nephropathy. 1985;4:32-3. Google Scholar86. Mogensen C. Progression of nephropathy in long-term diabetics with proteinuria and effect of initial anti-hypertensive treatment. Scand J Clin Lab Invest. 1976;36:383-8. CrossrefMedlineGoogle Scholar87. VibertiMackintoshBilousPickupKeen GDRJH. Proteinuria in diabetes mellitus: role of spontaneous and experimental variation of glycemia. Kidney Int. 1982;21:714-20. CrossrefMedlineGoogle Scholar88. ChristiansenFrandsenPairing JMH. The effect of intravenous insulin infusion of kidney function in insulin-dependent diabetes mellitus. Diabetologia. 1981;20:199-204. CrossrefMedlineGoogle Scholar89. VibertiPickupPhilJarrettKeen GJDRH. Effect of control of blood glucose on urinary excretion of albumin and δ-2 microglobulin in insulin-dependent diabetes. N Engl J Med. 1979;300:638-41. CrossrefMedlineGoogle Scholar90. MogensenChristiansenGundersen CNH. The acute effect of insulin on renal hemodynamics and protein excretion in diabetics. Diabetologia. 1978;15:153-7. CrossrefMedlineGoogle Scholar91. WatkinsBlaineyBrewer PJD. The natural history of diabetic renal disease. Q J Med. 1972;164:437-56. Google Scholar92. Poortmans J. Postexercise proteinuria in humans. JAMA. 1985;253:236-40. CrossrefMedlineGoogle Scholar93. MogensenVittinghusSolling CEK. Abnormal albumin excretion after two provocative renal tests in diabetes: physical exercise and lysine injection. Kidney Int. 1979;16:385-93. CrossrefMedlineGoogle Scholar94. VittinghusMogensen EC. Graded exercise and protein excretion in diabetic man and the effect of insulin treatment. Kidney Int. 1982;21:725-9. CrossrefMedlineGoogle Scholar95. VibertiPickupBilousKeenMackintosh GJRHD. Correction of exercise-induced microalbuminuria in insulin-dependent diabetics after 3 weeks of subcutaneous insulin infusion. Diabetes. 1981;30:818-23. CrossrefMedlineGoogle Scholar96. SteffesBrownMauer MDS. The development, enhancement, and reversal of the secondary complications of diabetes mellitus. Hum Pathol. 1979;10:293-9. CrossrefMedlineGoogle Scholar97. ParvingAndersenSmidtSvendsen HAUP. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983;1:1175-9. CrossrefMedlineGoogle Scholar98. ChristliebKaldanyD'EliaWilliams AAJG. Aldosterone responsiveness in patients with diabetes mellitus. Diabetes. 1978;27:732-7. CrossrefMedlineGoogle Scholar99. MossOsterPerezKatzVaamonde SJGFC. Reninaldosterone responsiveness in uncomplicated juvenile-type diabetes mellitus. Horm Res. 1978;9:130-6. CrossrefMedlineGoogle Scholar100. DruryBodansky PH. The relationship of the renin-angiotensin system in Type I diabetes to microvascular disease. Hypertension. 1985;7(suppl II):II84-9. MedlineGoogle Scholar101. O'HareFerrissBradyTwomeyO'Sullivan JJDBD. Exchangeable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension. 1985;7(suppl II):II43-8. MedlineGoogle Scholar102. WisemanDruryKeenViberti MPHG. Plasma renin activity in insulin-dependent diabetics with raised glomerular filtration rate. Clin Endocrinol. 1984;21:409-14. CrossrefMedlineGoogle Scholar103. FerrissSullivanGonggrijpColeO'Sullivan JPHMD. Plasma angiotensin II and aldosterone in unselected diabetic patients. Clin Endocrinol. 1982;17:261-9. CrossrefMedlineGoogle Scholar104. PerezLespierJacobi GLJ. Hyporeninemia and hypoaldosteronism in diabetes mellitus. Arch Intern Med. 1977;137:852-5. CrossrefMedlineGoogle Scholar105. WeidmannBaretta-PiccoliGluck PCA. Hypoaldosteronism without hyperkalemia. Klin Wochenschr. 1980;58:185-94. CrossrefMedlineGoogle Scholar106. Feldt-RasmussenMathiesenDeckertGieseChristensenBent-Hansen BETJNL. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type I diabetes mellitus. Diabetologia. 1987;30:610-7. MedlineGoogle Scholar107. DeFronzo R. Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int. 1980;17:118-34. CrossrefMedlineGoogle Scholar108. VilloriaNunezMiraliesDe Castro del PozoTabernero Romo JJJSJ. Hyporeninemic hypoaldosteronism in diabetic patients with chronic renal failure. Am J Nephrol. 1988;8:127-37. CrossrefMedlineGoogle Scholar109. LuetscherKraemerWilsonSchwartzBryer-Ash JFDHM. Increased plasma inactive renin in diabetes mellitus. N Engl J Med. 1985;312:1412-7. CrossrefMedlineGoogle Scholar110. Bryer-AshFrazeLuetscher MEJ. Plasma renin and prorenin (inactive renin) in diabetes mellitus: effects of intravenous furo semide. J Clin Endocrinol Metab. 1988;66:454-8. CrossrefMedlineGoogle Scholar111. LuetscherKraemer JF. Microalbuminuria and increased plasma prorenin: prevalence in diabetics followed up for four years. Arch Intern Med. 1988;148:937-41. CrossrefMedlineGoogle Scholar112. ChristliebAssalKatsilambrasWilliamsKozakSuzuki AJNGGT. Plasma renin activity and blood volume in uncontrolled diabetes. Diabetes. 1975;24:190-3. CrossrefMedlineGoogle Scholar113. FerrissO'HaraKelleher JJC. Diabetic control and the renin-angiotensin system, catecholamines, and blood pressure. Hypertension. 1985;7(suppl II):II58-63. MedlineGoogle Scholar114. CaseAtlasLaraghSealeySullivanMcKinstry DSJJPD. Clinical experience with blockage of the renin-angiotensin system by an oral converting-enzyme inhibitor (Captopril) in hypertensive patients. Prog Cardiovasc Dis. 1978;21:195-206. CrossrefMedlineGoogle Scholar115. MarksBingThurstonSwales ERHJ. Vasodepressor property of the converting enzyme inhibitor Captopril: the role of factors other than renin-angiotensin blockage in the rat. Clin Sci. 1980;58:1-6. CrossrefMedlineGoogle Scholar116. CroogLevineTesta SSM. The effects of antihypertensive therapy on the quality of life. N Engl J Med. 1986;314:1657-64. CrossrefMedlineGoogle Scholar117. HostetterTroyBrenner TJB. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981;19:410-5. CrossrefMedlineGoogle Scholar118. BrennerMeyerHostetter BTT. Dietary protein intake and the progressive nature of renal disease. N Engl J Med. 1982;307:652-9. CrossrefMedlineGoogle Scholar119. Brenner B. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985;249:F324-37. MedlineGoogle Scholar120. BallerinanSkoreckiBrenner BKB. Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rat. Am J Physiol. 1984;247:F110-6. MedlineGoogle Scholar121. Campbell D. Circulating and tissue angiotensin systems. J Clin Invest. 1987;79:1-6. CrossrefMedlineGoogle Scholar122. Zusman R. Renin and non-renin-mediated antihypertensive actions of converting enzyme inhibitors. Kidney Int. 1984;25:969-83. CrossrefMedlineGoogle Scholar123. Brochner-MortensenDitzel JJ. Glomerular filtration rate and extracellular fluid volume in insulin-dependent patients with diabetes mellitus. Kidney Int. 1982;21:696-8. CrossrefMedlineGoogle Scholar124. MogensenAndersen CM. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes. 1973;22:706-12. CrossrefMedlineGoogle Scholar125. Mogensen C. Renal function changes in diabetes. Diabetes. 1976;25:872-9. MedlineGoogle Scholar126. ChristiansenGammelgaardTronierSwendsenParving JJBPH. Kidney function and size before and during initial insulin treatment. Kidney Int. 1982;21:683-8. CrossrefMedlineGoogle Scholar127. MogensenAndersen CM. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin treatment. Diabetologia. 1975;11:221-4. CrossrefMedlineGoogle Scholar128. WisemanSaundersKeenViberti MAHG. Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin-dependent diabetes. N Engl J Med. 1985;312:617-21. CrossrefMedlineGoogle Scholar129. HostetterMeyerRennkeBrenner TTHB. Influence of strict control of disease on intrarenal hemodynamics [Abstract]. Kidney Int. 1983;23:215A. Google Scholar130. Seyer-Hansen K. Renal hypertrophy in experimental diabetes mellitus. Kidney Int. 1983;23:643-6. CrossrefMedlineGoogle Scholar131. GarciaMateosGrande PAC. Relation of kidney size to kidney function in early insulin-dependent diabetes. Diabetologia. 1981:21:363-7. MedlineGoogle Scholar132. ChristiansenFrandsenPairing JMH. Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetics. Diabetologia. 1981;21:368-73. CrossrefMedlineGoogle Scholar133. CorvilainAbramow JM. Some effects of human growth hormone on renal hemodynamics and on tubular phosphate transport in man. J Clin Invest. 1962;41:1230-5. CrossrefMedlineGoogle Scholar134. ParvingChristiansenNoerTronierMogensen HJIBC. The effect of glucagon infusion on kidney function in short-term insulin-dependent juvenile diabetes. Diabetologia. 1980:19:350-4. CrossrefMedlineGoogle Scholar135. ChristiansenGammelgaardFrandsenRskovParving JJMHH. Kidney function and size in type I (insulin-dependent) diabetic patients before and during growth hormone administration for one week. Diabetologia. 1982;22:333-7. CrossrefMedlineGoogle Scholar136. MauerSteffesAzarSandbergBrown SMSSD. The effects of Goldblatt hypertension on development of glomerular lesions of diabetes mellitus in the rat. Diabetes. 1978;27:738-44. CrossrefMedlineGoogle Scholar137. BerkmanRifkin JH. Unilateral nodular diabetic glomerulosclerosis (Kimmelstiel-Wilson): report of a case. Metabolism. 1973;22:715-22. CrossrefMedlineGoogle Scholar138. DworkinIchikawaBrenner LIB. Hormonal modulation of glomerular function. Am J Physiol. 1983;244:F95-104. MedlineGoogle Scholar139. SchorIchikawaBrenner NIB. Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney Int. 1981;20:442-51. CrossrefMedlineGoogle Scholar140. SraerSraerChanselRusso-MarieKouznetzovaArdaillou JJDFBR. Prostaglandin synthesis by isolated rat renal glomeruli. Mol Cell Endocrinol. 1979;16:29-37. CrossrefMedlineGoogle Scholar141. HassidKonieczkowskiDunn AMM. Prostaglandin synthesis in isolated rat kidney glomeruli. Proc Natl Acad Sci USA. 1979;76:1155-9. CrossrefMedlineGoogle Scholar142. SchlondorffRoczniakSatrianoFolkert DSJV. Prostaglandin synthesis by isolated rat glomeruli: effect of angiotensin II. Am J Physiol. 1980;238:F486-95. Google Scholar143. SraerFoidartChanselMahieuKouznetzovaArdaillou JJDPBR. Prostaglandin synthesis by mesangial and epithelial glomerular cultured cells. FEBS Lett. 1979;104:420-4. CrossrefMedlineGoogle Scholar144. KreisbergKarnovskyLevine JML. Prostaglandin production by homogeneous cultures of rat glomerular epithelial and mesangial cells. Kidney Int. 1982;22:355-9. CrossrefMedlineGoogle Scholar145. ScharschmidtDunn LM. Prostaglandin synthesis by rat glomerular mesangial cells in culture-effects of angiotensin II and arginine vasopressin. J Clin Invest. 1983;71:1756-64. CrossrefMedlineGoogle Scholar146. BaylisBrenner CB. Modulation by prostaglandin synthesis inhibitors of the action of exogenous angiotensin II on glomerular ultrafiltration in the rat. Circ Res. 1978;43:889-98. CrossrefMedlineGoogle Scholar147. ScharschmidtDouglasDunn LJM. Angiotensin II and eicosanoids in the control of glomerular size in the rat and the human. Am J Physiol. 1986;250:F348-56. MedlineGoogle Scholar148. SchambelanBlakeSraerBensNivezWahbe MSJMMF. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus. J Clin Invest. 1985;75:404-12. CrossrefMedlineGoogle Scholar149. KreisbergPatel JP. The effects of insulin, glucose and diabetes on prostaglandin production by rat kidney glomeruli and cultured mesangial cells. Prostaglandins Leuko Med. 1983;11:431-42. CrossrefMedlineGoogle Scholar150. CravenCainesDeRubertis PMF. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism. 1987;36:95-103. CrossrefMedlineGoogle Scholar151. MoelSafirsteinMcEvoyHsueh DRRW. The effect of aspirin on experimental diabetic nephropathy. J Lab Clin Med. 1987;110:300-7. MedlineGoogle Scholar152. JensenStevenBlaehrChristiansenParving PKHJH. Effects of indomethacin on glomerular hemodynamics in experimental diabetes. Kidney Int. 1986;29:490-5. CrossrefMedlineGoogle Scholar153. EstamajesFernandezHalperin EMI. Renal hemodynamic abnormalities in patients with short term insulin-dependent diabetes mellitus: role of renal prostaglandins. J Clin Endocrinol Metab. 1985;60:1231-6. CrossrefMedlineGoogle Scholar154. AndersenMeyerRennkeBrenner STHB. Control ofglomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 1985;76:612-9. CrossrefMedlineGoogle Scholar155. IchikawaBrenner IB. Glomerular action of angiotensin II. Am J Med. 1984;76:43-9. CrossrefMedlineGoogle Scholar156. BlantzKonnenTucker RKB. Angiotensin II effect upon the glomerular microcirculation and ultrafiltration. J Clin Invest. 1976;57:419-34. CrossrefMedlineGoogle Scholar157. Henrich W. Role of prostaglandins in renin secretion. Kidney Int. 1981;19:822-30. CrossrefMedlineGoogle Scholar158. GerberOlsonNies JRA. Interrelationship between prostaglandins and renin release. Kidney Int. 1981;19:816-21. CrossrefMedlineGoogle Scholar159. VibertiBilousMackintoshBendingKeen GRDJH. Long term correction of hyperglycemia and progression of renal failure in insulin dependent diabetes. Br Med J. 1983;286:598-602. CrossrefMedlineGoogle Scholar160. CatalandO'Dorisio ST. Diabetic nephropathy: clinical course in patients treated with the subcutaneous insulin pump. JAMA. 1983;249:2059-61. CrossrefMedlineGoogle Scholar161. . Effect of 6 months of strict metabolic control of eye and kidney function in insulin-dependent diabetics with background retinopathy. Lancet. 1982;1:121-4. MedlineGoogle Scholar162. KrolewskiWarramCupplesGormanSzaboChristlieb AJACAA. Hypertension, orthostatic hypotension and the microvascular complications of diabetes. J Chronic Dis. 1985;38:319-26. CrossrefMedlineGoogle Scholar163. BabaMurabayashiAoyagi TSK. Prevalence of hypertension in diabetes mellitus—its relation to diabetic nephropathy. Tohoku J Exp Med. 1985;145:167-73. CrossrefMedlineGoogle Scholar164. AubiaHojmanChine JLM. Hypertension and nephrotoxicity in the rate of decline in kidney function in diabetic nephropathy. Clin Nephrol. 1987;27:15-20. MedlineGoogle Scholar165. BerglundLins JL. Metabolic and blood pressure monitoring in diabetic renal failure. Acta Med Scand. 1985;218:401-8. CrossrefMedlineGoogle Scholar166. WalkerHermannMurphyPatz WJRA. Elevated blood pressure and angiotensin II are associated with accelerated loss of renal function in diabetic nephropathy. Trans Am Clin Climatol Assoc. 1985;97:94-104. Google Scholar167. Mogensen C. Antihypertensive treatment inhibiting the progression of diabetic nephropathy. Acta Endocrinol Suppl (Copenh). 1980;238:103-8. MedlineGoogle Scholar168. ParvingAndersenHommelSmidt HAEU. Effects of long-term anti-hypertensive treatment on kidney function in diabetic nephropathy. Hypertension. 1985;7(suppl II):II114-7. MedlineGoogle Scholar169. ValvoBedognaCasagrande EVP. Captopril in patients with type II diabetes and renal insufficiency: systemic and renal hemodynamic alterations. Am J Med. 1988;85:344-8. CrossrefMedlineGoogle Scholar170. Christlieb A. The hypertensions of diabetes. Diabetes Care. 1982;5:50-8. CrossrefMedlineGoogle Scholar171. EvanoffThompsonBrownWeinman GCJE. The effect of dietary protein restriction on the progression of diabetic nephropathy. Arch Intern Med. 1987;147:492-5. CrossrefMedlineGoogle Scholar172. CiavarellaDi MizioStefoniBorgninoVannini AGSLP. Reduced albuminuria after dietary protein restriction in insulindependent diabetic patients with clinical nephropathy. Diabetes Care. 1987;10:404-13. CrossrefGoogle Scholar173. RitzHasslacher EC. Genesis and treatment of hypertension in diabetes mellitus. Diabetic Nephropathy. 1984;3:3-11. Google Scholar174. Houston M. Adverse effects of antihypertensive drug therapy on glucose intolerance. Cardiol Clin. 1986;4:117-35. CrossrefMedlineGoogle Scholar175. ParvingKastrupSmidt HJU. Reduced transcapillary escape of albumin during acute blood pressure-lowering in type I (insulin-dependent) diabetic patients with nephropathy. Diabetologia. 1985;28:797-801. CrossrefMedlineGoogle Scholar176. ShamoonBaylorKambososCharlapPlawesFrishman HPDSSW. Influence of oral verapamil on glucoregulatory hormones in man. J Clin Endocrinol Metab. 1985;60:536-41. CrossrefMedlineGoogle Scholar177. CharlesKetesplegersBuysschaertLambert SJMA. Hyperglycemic effect of nifedipine. Br Med J 1981;283:19-20. CrossrefMedlineGoogle Scholar178. BabaIshizakiIdoAoyagiMurabayaskiTekebe TTYKSK. Renal effects of nicardipine, a calcium channel entry blocker, in hypertensive Type II diabetic patients with nephropathy. Diabetes. 1986;35:1206-14. CrossrefMedlineGoogle Scholar179. ChimoriMiyazakiKosakaSakanakaYasudaMiura KSJAKK. The hypotensive effect of single-dose Captopril in diabetics. Clin Exp Hypertens. 1986;8:1231-45. Google Scholar180. HommelParvingMathiesenEdsbergNielsenGiese EHEBMJ. Effect of Captopril on kidney function in insulin-dependent diabetic patients with nephropathy. Br Med J 1986;293:467-70. CrossrefMedlineGoogle Scholar181. Statement on hypertension in diabetes mellitus. The Working Group on Hypertension in Diabetes. Arch Intern Med. 1987;147:1165-6. CrossrefMedlineGoogle Scholar182. KaplanRosenstockRaskin NJP. A differing view of treatment of hypertension in patients with diabetes mellitus. Arch Intern Med. 1987;147:1160-2. CrossrefMedlineGoogle Scholar183. WalkerHermannYinMurphyPatz WJDRA. Diuretics accelerate diabetic nephropathy in hypertensive insulin-dependent and non-insulin dependent subjects [Abstract]. Clin Res. 1987;35:663A. Google Scholar184. DuggalWalkerHermannTylerGimenez PWJGL. Relation of microalbuminuria and GFR in patients with non-insulin dependent diabetes mellitus [Abstract]. Kidney Int. 1988;33:189. Google Scholar185. JerumsCooperSeemanMurrayMcNeil GMERJ. Spectrum of proteinuria in Type I and Type II diabetes. Diabetes Care. 1987;10:419-27. CrossrefMedlineGoogle Scholar186. Feldt-RasmussenMathiesenDeckert BET. Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet. 1986;2:1300-4. CrossrefMedlineGoogle Scholar187. BendingVibertiBilousKeen JGRH (for the KROC Collaborative Study Group). Eight-month correction of hyperglycemia in insulin-dependent diabetes mellitus is associated with a significant and sustained reduction of urinary albumin excretion rates in patients with microalbuminuria. Diabetes. 1985;34(suppl 3):69-73. CrossrefMedlineGoogle Scholar188. HommelMathiesenEdsbergBahnsenParving EEBMH. Acute reduction of arterial blood pressure reduces urinary albumin excretion in type I (insulin-dependent) diabetic patients with incipient nephropathy. Diabetologia. 1986;29:211-5. CrossrefMedlineGoogle Scholar189. ChristensenMogensen CC. Effect of antihypertensive treatment on progression of incipient diabetic nephropathy. Hypertension. 1985;7(suppl II):II109-13. MedlineGoogle Scholar190. ChristensenMogensen CC. Acute and long-term effect of antihypertensive treatment on exercise-induced albuminuria in incipient diabetic nephropathy. Scand J Clin Lab Invest. 1986;46:553-9. CrossrefMedlineGoogle Scholar191. PassaLeBlancMarre PHM. Effects of enalapril in insulindependent diabetic subjects with mild to moderate uncomplicated hypertension. Diabetes Care. 1987;10:200-4. CrossrefMedlineGoogle Scholar192. MathiesenHommelOlsenParving EEUH. Elevated urinary prostaglandin excretion and the effect of indomethacin on renal function in incipient diabetic nephropathy. Diabetic Med. 1988;5:145-9. CrossrefMedlineGoogle Scholar193. KupinCortesDumlerFeldkampKilatesLevin WPFCMN. Effect on renal function of change from high to moderate protein intake in type I diabetic patients. Diabetes. 1987;36:73-9. CrossrefMedlineGoogle Scholar194. ChristiansenFeldt-RasmussenParving JBH. Short term inhibition of prostaglandin synthesis has no effect on the elevated glomerular filtration rate of early insulin-dependent diabetes. Diabetic Med. 1985;2:17-20. CrossrefMedlineGoogle Scholar This content is PDF only. To continue reading please click on the PDF icon. Author, Article, and Disclosure InformationAffiliations: From the Interdepartmental Dean's Conference arranged by the Department of Medicine, University of California, Davis, School of Medicine, Davis, California, and the Veterans Administration Medical Center, Martinez, California. Michael G. Geokas, MD, PhD, is permanent chairman and organizer of these conferences.Authors who wish to cite a section of the conference and specifically indicate its author can use this example for the form of the reference:Krolewski AS. The natural history of diabetic nephropathy in type I diabetes and the role of hypertension, pp 795-798. In: Noth RH. Diabetic Nephropathy: Hemodynamic Basis and Implications for Disease Management. Ann Intern Med. 1989;110:795-813. PreviousarticleNextarticle Advertisement FiguresReferencesRelatedDetails Metrics Cited ByCardiovascular disease in diabetes, beyond glucoseNew Markers of Kidney InjuryDeterminants of Intravascular Resistance in Indian Diabetic Nephropathy Patients: A Hospital-Based StudyMolecular susceptibility to glycation and its implication in diabetes mellitus and related diseasesNew Markers of Kidney InjuryDiabetic Nephropathy: The Proteinuria HypothesisStretch-induced mesangial cell ERK1/ERK2 activation is enhanced in high glucose by decreased dephosphorylationPredictors of hospitalization and death among pre‐dialysis patients: a retrospective cohort studyThe effect of losartan and captopril on glomerular basement membrane anionic charge in a diabetic rat modelMMP-Mediated Events in DiabetesAtrial natriuretic peptide increases albuminuria in type 1 diabetic patients: evidence for blockade of tubular protein reabsorption.A Randomized Trial of Captopril for Microalbuminuria in Normotensive Adults with Sickle Cell AnemiaPerindopril Ameliorates Glomerular and Renal Tubulointerstitial Injury in the SHR/N-Corpulent RatShor- and long-term effect of a calcium channel blocker, barnidipine, on renal hemodynamics in spontaneously hypertensive, diabetic ratsASYMPTOMATIC URINARY ABNORMALITIESEarly detection and treatment of renal disease in hospitalized diabetic and hypertensive patients: Important differences between practice and published guidelinesDIFFERENTIAL EFFICACY OF PERINDOPRIL AND ENALAPRIL IN EXPERIMENTAL DIABETIC NEPHROPATHYStudies of glomerular protein content in the diabetic hypertensive rat: the effect of antihypertensive therapyEffect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications TrialGeneral management of the patient with chronic renal failureDiabetic glomerulopathy in the SHR/N-corpulent rat: role of dietary carbohydrate in a model of NIDDMAmelioration of diabetic nephropathy by treatment with monoclonal antibodies against glycated albuminEicosanoids in the Pathogenesis of the Functional and Structural Alterations of the Kidney in DiabetesIloprost decreases urinary albumin excretion rate in patients with diabetic nephropathyEffect of diltiazem on glomerular heparan sulfate and albuminuria in diabetic rats.Renal Effects of Antihypertensive Medications: An OverviewDiabetic Nephropathy: A Comprehensive ApproachBaseline analysis of renal function in the Diabetes Control and Complications TrialAngiotensin-Converting Enzyme Inhibitors in Diabetic NephropathyDiabetic Nephropathy in Insulin-Dependent PatientsA Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate the Effect of Enalapril in Patients With Clinical Diabetic NephropathyThe nature of clinical trials in nephrologyAbnormal molecular weight profile of urinary protein in rats with streptozotocin-induced diabetesHypertension, the endothelial cell, and the vascular complications of diabetes mellitus.Microalbuminuria: A risk factor for vascular and renal complications of hypertensionNifedipine versus fosinopril in uninephrectomized diabetic ratsTreatment of arterial hypertension in diabetic humans: Importance of therapeutic selectionGlomerular hemodynamic function in early diabetesRenal Transplantation (RT) in Diabetic Nephropathy (DN) in the 80's DecadeProstanoids in paediatric kidney diseasesA Population Study of Renal Function in Sickle Cell Anemia 15 May 1989Volume 110, Issue 10Page: 795-813KeywordsGenetic predispositionHemodynamicsHypertensionMicroalbuminuriaNephrologyProstaglandinsProteinsResearch grantsVasodilationVeteran care Issue Published: 15 May 1989 Copyright©1989 American College of PhysiciansPDF DownloadLoading ...
Referência(s)