Revisão Acesso aberto Revisado por pares

Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation

2014; Cell Press; Volume: 84; Issue: 2 Linguagem: Inglês

10.1016/j.neuron.2014.10.019

ISSN

1097-4199

Autores

Sandra Maday, Alison E. Twelvetrees, Armen J. Moughamian, Erika L.F. Holzbaur,

Tópico(s)

Ubiquitin and proteasome pathways

Resumo

•Axonal transport of organelles and proteins is driven by kinesin and dynein motors•Cargo-bound motors are tightly regulated by Rabs, kinases, and scaffolding proteins•Defects in transport lead to neurodevelopmental or neurodegenerative disease Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function. Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function. The active transport of organelles, proteins, and RNA along the extended axons of neurons has long fascinated scientists. The remarkable fact that the axon depends on the biosynthetic and degradative activities of the soma, located up to a meter away, highlights the importance of active transport. Genetic evidence confirms an essential role for active transport in the neuron, as defects in many of the proteins involved are sufficient to cause either neurodevelopmental or neurodegenerative disease (Table 1).Table 1Neurodevelopmental and Neurodegenerative Diseases Caused by Mutations in the Axonal Transport MachineryProtein(s)Gene(s) with Known MutationDisease(s)ReferencesMotor ProteinsDyneinDYNC1H1CMT, SMA-LED, ID, MCD (Epilepsy)Weedon et al., 2011Weedon M.N. Hastings R. Caswell R. Xie W. Paszkiewicz K. Antoniadi T. Williams M. King C. Greenhalgh L. Newbury-Ecob R. Ellard S. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease.Am. J. Hum. Genet. 2011; 89: 308-312Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, Tsurusaki et al., 2012Tsurusaki Y. Saitoh S. Tomizawa K. Sudo A. Asahina N. Shiraishi H. Ito J. Tanaka H. Doi H. Saitsu H. et al.A DYNC1H1 mutation causes a dominant spinal muscular atrophy with lower extremity predominance.Neurogenetics. 2012; 13: 327-332Crossref PubMed Scopus (6) Google Scholar, Harms et al., 2012Harms M.B. Ori-McKenney K.M. Scoto M. Tuck E.P. Bell S. Ma D. Masi S. Allred P. Al-Lozi M. Reilly M.M. et al.Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy.Neurology. 2012; 78: 1714-1720Crossref PubMed Google Scholar, Willemsen et al., 2012Willemsen M.H. Vissers L.E. Willemsen M.A. van Bon B.W. Kroes T. de Ligt J. de Vries B.B. Schoots J. Lugtenberg D. Hamel B.C. et al.Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects.J. Med. Genet. 2012; 49: 179-183Crossref PubMed Scopus (28) Google Scholar, Poirier et al., 2013Poirier K. Lebrun N. Broix L. Tian G. Saillour Y. Boscheron C. Parrini E. Valence S. Pierre B.S. Oger M. et al.Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly.Nat. Genet. 2013; 45: 639-647Crossref PubMed Scopus (21) Google Scholar, Fiorillo et al., 2014Fiorillo C. Moro F. Yi J. Weil S. Brisca G. Astrea G. Severino M. Romano A. Battini R. Rossi A. et al.Novel dynein DYNC1H1 neck and motor domain mutations link distal spinal muscular atrophy and abnormal cortical development.Hum. Mutat. 2014; 35: 298-302Crossref PubMed Google ScholarKinesin-1KIF5A, KIF5CHSP (SPG10), ID, MCDEbbing et al., 2008Ebbing B. Mann K. Starosta A. Jaud J. Schöls L. Schüle R. Woehlke G. Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity.Hum. Mol. Genet. 2008; 17: 1245-1252Crossref PubMed Scopus (47) Google Scholar, de Ligt et al., 2012de Ligt J. Willemsen M.H. van Bon B.W. Kleefstra T. Yntema H.G. Kroes T. Vulto-van Silfhout A.T. Koolen D.A. de Vries P. Gilissen C. et al.Diagnostic exome sequencing in persons with severe intellectual disability.N. Engl. J. Med. 2012; 367: 1921-1929Crossref PubMed Scopus (163) Google Scholar, Poirier et al., 2013Poirier K. Lebrun N. Broix L. Tian G. Saillour Y. Boscheron C. Parrini E. Valence S. Pierre B.S. Oger M. et al.Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly.Nat. Genet. 2013; 45: 639-647Crossref PubMed Scopus (21) Google ScholarKinesin-13KIF2ACDCBM3/MCDPoirier et al., 2013Poirier K. Lebrun N. Broix L. Tian G. Saillour Y. Boscheron C. Parrini E. Valence S. Pierre B.S. Oger M. et al.Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly.Nat. Genet. 2013; 45: 639-647Crossref PubMed Scopus (21) Google ScholarKinesin-3KIF1A, KIF1B, KIF1CHSP (SPG30), CMT2A, HSN, MR, SPAXErlich et al., 2011Erlich Y. Edvardson S. Hodges E. Zenvirt S. Thekkat P. Shaag A. Dor T. Hannon G.J. Elpeleg O. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis.Genome Res. 2011; 21: 658-664Crossref PubMed Scopus (63) Google Scholar, Zhao et al., 2001Zhao C. Takita J. Tanaka Y. Setou M. Nakagawa T. Takeda S. Yang H.W. Terada S. Nakata T. Takei Y. et al.Charcot-Marie-Tooth Disease Type 2A caused by mutation in a microtubule motor KIF1Bβ.Cell. 2001; 105: 587-597Abstract Full Text Full Text PDF PubMed Scopus (454) Google Scholar, Rivière et al., 2011Rivière J.B. Ramalingam S. Lavastre V. Shekarabi M. Holbert S. Lafontaine J. Srour M. Merner N. Rochefort D. Hince P. et al.KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2.Am. J. Hum. Genet. 2011; 89: 219-230Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar, Hamdan et al., 2011Hamdan F.F. Gauthier J. Araki Y. Lin D.T. Yoshizawa Y. Higashi K. Park A.R. Spiegelman D. Dobrzeniecka S. Piton A. et al.S2D GroupExcess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability.Am. J. Hum. Genet. 2011; 88: 306-316Abstract Full Text Full Text PDF PubMed Scopus (69) Google Scholar, Klebe et al., 2012Klebe S. Lossos A. Azzedine H. Mundwiller E. Sheffer R. Gaussen M. Marelli C. Nawara M. Carpentier W. Meyer V. et al.KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations.Eur. J. Hum. Genet. 2012; 20: 645-649Crossref PubMed Scopus (17) Google Scholar, Dor et al., 2014Dor T. Cinnamon Y. Raymond L. Shaag A. Bouslam N. Bouhouche A. Gaussen M. Meyer V. Durr A. Brice A. et al.KIF1C mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction.J. Med. Genet. 2014; 51: 137-142Crossref PubMed Scopus (2) Google Scholar, Novarino et al., 2014Novarino G. Fenstermaker A.G. Zaki M.S. Hofree M. Silhavy J.L. Heiberg A.D. Abdellateef M. Rosti B. Scott E. Mansour L. et al.Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders.Science. 2014; 343: 506-511Crossref PubMed Scopus (15) Google ScholarKinesin-4KIF21ACFEOMYamada et al., 2003Yamada K. Andrews C. Chan W.M. McKeown C.A. Magli A. de Berardinis T. Loewenstein A. Lazar M. O’Keefe M. Letson R. et al.Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1).Nat. Genet. 2003; 35: 318-321Crossref PubMed Scopus (121) Google ScholarMotor Adaptors and RegulatorsDynactinDCTN1Perry syndrome, MNDPuls et al., 2003Puls I. Jonnakuty C. LaMonte B.H. Holzbaur E.L. Tokito M. Mann E. Floeter M.K. Bidus K. Drayna D. Oh S.J. et al.Mutant dynactin in motor neuron disease.Nat. Genet. 2003; 33: 455-456Crossref PubMed Scopus (520) Google Scholar, Farrer et al., 2009Farrer M.J. Hulihan M.M. Kachergus J.M. Dächsel J.C. Stoessl A.J. Grantier L.L. Calne S. Calne D.B. Lechevalier B. Chapon F. et al.DCTN1 mutations in Perry syndrome.Nat. Genet. 2009; 41: 163-165Crossref PubMed Scopus (98) Google Scholar, Caroppo et al., 2014Caroppo P. Le Ber I. Clot F. Rivaud-Pechoux S. Camuzat A. De Septenville A. Boutoleau-Bretonniere C. Mourlon V. Sauvee M. Lebouvier T. et al.DCTN1 mutation analysis in families with progressive supranuclear palsy-like phenotypes.JAMA Neurology. 2014; 71: 208-215Crossref PubMed Scopus (1) Google Scholar, Araki et al., 2014Araki E. Tsuboi Y. Daechsel J. Milnerwood A. Vilarino-Guell C. Fujii N. Mishima T. Oka T. Hara H. Fukae J. et al.A novel DCTN1 mutation with late-onset parkinsonism and frontotemporal atrophy.Mov. Disord. 2014; 29: 1201-1204Crossref PubMed Scopus (1) Google ScholarBICD2BICD2SMA, HSPNeveling et al., 2013Neveling K. Martinez-Carrera L.A. Hölker I. Heister A. Verrips A. Hosseini-Barkooie S.M. Gilissen C. Vermeer S. Pennings M. Meijer R. et al.Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy.Am. J. Hum. Genet. 2013; 92: 946-954Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar, Peeters et al., 2013Peeters K. Litvinenko I. Asselbergh B. Almeida-Souza L. Chamova T. Geuens T. Ydens E. Zimoń M. Irobi J. De Vriendt E. et al.Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance.Am. J. Hum. Genet. 2013; 92: 955-964Abstract Full Text Full Text PDF PubMed Scopus (12) Google Scholar, Oates et al., 2013Oates E.C. Rossor A.M. Hafezparast M. Gonzalez M. Speziani F. MacArthur D.G. Lek M. Cottenie E. Scoto M. Foley A.R. et al.UK10KMutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia.Am. J. Hum. Genet. 2013; 92: 965-973Abstract Full Text Full Text PDF PubMed Scopus (16) Google ScholarHuntingtinHTTHDHDCRG (Huntington’s Disease Collaborative Research Group), 1993HDCRG (Huntington’s Disease Collaborative Research Group)A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes.Cell. 1993; 72: 971-983Abstract Full Text PDF PubMed Google ScholarLis-1PAFAH1B1LissencephalyDobyns et al., 1993Dobyns W.B. Reiner O. Carrozzo R. Ledbetter D.H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13.JAMA. 1993; 270: 2838-2842Crossref PubMed Google Scholar, Reiner et al., 1993Reiner O. Carrozzo R. Shen Y. Wehnert M. Faustinella F. Dobyns W.B. Caskey C.T. Ledbetter D.H. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats.Nature. 1993; 364: 717-721Crossref PubMed Scopus (629) Google ScholarNDE1NDE1Microcephaly, MHACAlkuraya et al., 2011Alkuraya F.S. Cai X. Emery C. Mochida G.H. Al-Dosari M.S. Felie J.M. Hill R.S. Barry B.J. Partlow J.N. Gascon G.G. et al.Human mutations in NDE1 cause extreme microcephaly with lissencephaly [corrected].Am. J. Hum. Genet. 2011; 88: 536-547Abstract Full Text Full Text PDF PubMed Scopus (52) Google Scholar, Bakircioglu et al., 2011Bakircioglu M. Carvalho O.P. Khurshid M. Cox J.J. Tuysuz B. Barak T. Yilmaz S. Caglayan O. Dincer A. Nicholas A.K. et al.The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis.Am. J. Hum. Genet. 2011; 88: 523-535Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar, Paciorkowski et al., 2013Paciorkowski A.R. Keppler-Noreuil K. Robinson L. Sullivan C. Sajan S. Christian S.L. Bukshpun P. Gabriel S.B. Gleeson J.G. Sherr E.H. Dobyns W.B. Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption.Am. J. Med. Genet. A. 2013; 161A: 1523-1530Crossref PubMed Scopus (5) Google ScholarRab7RAB7ACMT2BVerhoeven et al., 2003Verhoeven K. De Jonghe P. Coen K. Verpoorten N. Auer-Grumbach M. Kwon J.M. FitzPatrick D. Schmedding E. De Vriendt E. Jacobs A. et al.Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy.Am. J. Hum. Genet. 2003; 72: 722-727Abstract Full Text Full Text PDF PubMed Scopus (251) Google ScholarCytoskeleton and Associated Proteins (e.g., MAPs)CLIP-170CLIP1ARIDLarti et al., 2014Larti F. Kahrizi K. Musante L. Hu H. Papari E. Fattahi Z. Bazazzadegan N. Liu Z. Banan M. Garshasbi M. et al.A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability.Eur. J. Hum. Genet. 2014; https://doi.org/10.1038/ejhg.2014.13Crossref PubMed Google ScholarDoublecortinDCXLissencephalydes Portes et al., 1998ades Portes V. Francis F. Pinard J.M. Desguerre I. Moutard M.L. Snoeck I. Meiners L.C. Capron F. Cusmai R. Ricci S. et al.doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH).Hum. Mol. Genet. 1998; 7: 1063-1070Crossref PubMed Scopus (169) Google Scholar, des Portes et al., 1998bdes Portes V. Pinard J.M. Billuart P. Vinet M.C. Koulakoff A. Carrie A. Gelot A. Dupuis E. Motte J. Berwald-Netter Y. et al.A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome.Cell. 1998; 92: 51-61Abstract Full Text Full Text PDF PubMed Scopus (531) Google Scholar, Gleeson et al., 1998Gleeson J.G. Allen K.M. Fox J.W. Lamperti E.D. Berkovic S. Scheffer I. Cooper E.C. Dobyns W.B. Minnerath S.R. Ross M.E. Walsh C.A. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein.Cell. 1998; 92: 63-72Abstract Full Text Full Text PDF PubMed Scopus (656) Google ScholarMicrotubulesTUBA1A, TUBA8, TUBG1, TUBB3, TUBB2BLissencephaly, MCD, microcephaly, polymicrogyria, CFEOMKeays et al., 2007Keays D.A. Tian G. Poirier K. Huang G.J. Siebold C. Cleak J. Oliver P.L. Fray M. Harvey R.J. Molnár Z. et al.Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans.Cell. 2007; 128: 45-57Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar, Poirier et al., 2007Poirier K. Keays D.A. Francis F. Saillour Y. Bahi N. Manouvrier S. Fallet-Bianco C. Pasquier L. Toutain A. Tuy F.P. et al.Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A).Hum. Mutat. 2007; 28: 1055-1064Crossref PubMed Scopus (97) Google Scholar, Poirier et al., 2010Poirier K. Saillour Y. Bahi-Buisson N. Jaglin X.H. Fallet-Bianco C. Nabbout R. Castelnau-Ptakhine L. Roubertie A. Attie-Bitach T. Desguerre I. et al.Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum. Mol. Genet.. 2010; 19: 4462-4473Google Scholar, Poirier et al., 2013Poirier K. Lebrun N. Broix L. Tian G. Saillour Y. Boscheron C. Parrini E. Valence S. Pierre B.S. Oger M. et al.Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly.Nat. Genet. 2013; 45: 639-647Crossref PubMed Scopus (21) Google Scholar, Jaglin et al., 2009Jaglin X.H. Poirier K. Saillour Y. Buhler E. Tian G. Bahi-Buisson N. Fallet-Bianco C. Phan-Dinh-Tuy F. Kong X.P. Bomont P. et al.Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria.Nat. Genet. 2009; 41: 746-752Crossref PubMed Scopus (125) Google Scholar, Abdollahi et al., 2009Abdollahi M.R. Morrison E. Sirey T. Molnar Z. Hayward B.E. Carr I.M. Springell K. Woods C.G. Ahmed M. Hattingh L. et al.Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia.Am. J. Hum. Genet. 2009; 85: 737-744Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar, Tischfield et al., 2010Tischfield M.A. Baris H.N. Wu C. Rudolph G. Van Maldergem L. He W. Chan W.M. Andrews C. Demer J.L. Robertson R.L. et al.Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance.Cell. 2010; 140: 74-87Abstract Full Text Full Text PDF PubMed Scopus (135) Google Scholar, Chew et al., 2013Chew S. Balasubramanian R. Chan W.M. Kang P.B. Andrews C. Webb B.D. MacKinnon S.E. Oystreck D.T. Rankin J. Crawford T.O. et al.A novel syndrome caused by the E410K amino acid substitution in the neuronal beta-tubulin isotype 3.Brain. 2013; 136: 522-535Crossref PubMed Scopus (11) Google ScholarNeurofilamentsNEFLCMTMersiyanova et al., 2000Mersiyanova I.V. Perepelov A.V. Polyakov A.V. Sitnikov V.F. Dadali E.L. Oparin R.B. Petrin A.N. Evgrafov O.V. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene.Am. J. Hum. Genet. 2000; 67: 37-46Abstract Full Text Full Text PDF PubMed Scopus (286) Google ScholarSpastinSPASTHSP (SPG4)Hazan et al., 1999Hazan J. Fonknechten N. Mavel D. Paternotte C. Samson D. Artiguenave F. Davoine C.S. Cruaud C. Dürr A. Wincker P. et al.Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia.Nat. Genet. 1999; 23: 296-303Crossref PubMed Scopus (364) Google ScholarTauMAPTFTD, Pick disease, ADHutton et al., 1998Hutton M. Lendon C.L. Rizzu P. Baker M. Froelich S. Houlden H. Pickering-Brown S. Chakraverty S. Isaacs A. Grover A. et al.Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17.Nature. 1998; 393: 702-705Crossref PubMed Scopus (1863) Google Scholar, Murrell et al., 1999Murrell J.R. Spillantini M.G. Zolo P. Guazzelli M. Smith M.J. Hasegawa M. Redi F. Crowther R.A. Pietrini P. Ghetti B. Goedert M. Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits.J. Neuropathol. Exp. Neurol. 1999; 58: 1207-1226Crossref PubMed Google ScholarAbbreviations are as follows: AD, Alzheimer’s disease; ARID, autosomal recessive intellectual disability; CDCBM3, complex cortical dysplasia with other brain malformations-3; CFEOM, congenital fibrosis of the extraocular muscles; CMT, Charcot-Marie-Tooth disease; FTD, frontotemporal dementia; HD, Huntington’s disease; HMN, hereditary motor neuropathy; HSN, hereditary sensory neuropathy; HSP, hereditary spastic paraplegia; ID, intellectual disability; MCD, malformations of cortical development; MHAC, microhydranencephaly; MND, motor neuron disease; MR, mental retardation; SMA, spinal muscular atrophy; SMA-LED, SMA-lower extremity dominant; and SPAX, spastic ataxia. Open table in a new tab Abbreviations are as follows: AD, Alzheimer’s disease; ARID, autosomal recessive intellectual disability; CDCBM3, complex cortical dysplasia with other brain malformations-3; CFEOM, congenital fibrosis of the extraocular muscles; CMT, Charcot-Marie-Tooth disease; FTD, frontotemporal dementia; HD, Huntington’s disease; HMN, hereditary motor neuropathy; HSN, hereditary sensory neuropathy; HSP, hereditary spastic paraplegia; ID, intellectual disability; MCD, malformations of cortical development; MHAC, microhydranencephaly; MND, motor neuron disease; MR, mental retardation; SMA, spinal muscular atrophy; SMA-LED, SMA-lower extremity dominant; and SPAX, spastic ataxia. Metabolic cell-labeling experiments in the 1960s demonstrated the rapid movement of newly synthesized proteins along the axon in a process once termed “cellulifugal transport” (Weiss, 1967Weiss P. Neuronal dynamics and axonal flow. 3. Cellulifugal transport of labeled neuroplasm in isolated nerve preparations.Proc. Natl. Acad. Sci. USA. 1967; 57: 1239-1245Crossref PubMed Google Scholar). Experiments with drugs that disrupt the cellular cytoskeleton demonstrated that microtubules are required for active transport along the axon (Kreutzberg, 1969Kreutzberg G.W. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine.Proc. Natl. Acad. Sci. USA. 1969; 62: 722-728Crossref PubMed Google Scholar). Pulse-chase labeling experiments led to the discovery of multiple phases of transport (reviewed in Griffin et al., 1976Griffin J.W. Price D.L. Drachman D.B. Engel W.K. Axonal transport to and from the motor nerve ending.Ann. N Y Acad. Sci. 1976; 274: 31-45Crossref PubMed Google Scholar). Organelles were observed to move outward from the cell body at “fast” speeds of up to 400 mm/day, or ∼1 μm/s, while cytoskeletal proteins and some soluble proteins were observed to move via “slow” transport, at speeds of <8 mm/day, or <0.1 μm/s. Outward-bound, anterograde (also known as orthograde) transport was most clearly defined by these metabolic labeling approaches. However, the retrograde transport of organelles from the distal axon back toward the cell body was also observed (Griffin et al., 1976Griffin J.W. Price D.L. Drachman D.B. Engel W.K. Axonal transport to and from the motor nerve ending.Ann. N Y Acad. Sci. 1976; 274: 31-45Crossref PubMed Google Scholar). The development of live-cell imaging allowed the direct observation of organelle motility (Allen et al., 1982Allen R.D. Metuzals J. Tasaki I. Brady S.T. Gilbert S.P. Fast axonal transport in squid giant axon.Science. 1982; 218: 1127-1129Crossref PubMed Google Scholar, Brady et al., 1982Brady S.T. Lasek R.J. Allen R.D. Fast axonal transport in extruded axoplasm from squid giant axon.Science. 1982; 218: 1129-1131Crossref PubMed Scopus (81) Google Scholar). These observations led to the discovery of the microtubule motor kinesin (Vale et al., 1985Vale R.D. Reese T.S. Sheetz M.P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility.Cell. 1985; 42: 39-50Abstract Full Text PDF PubMed Google Scholar), now known as kinesin-1 (see Table 1); cytoplasmic dynein was discovered soon after (Paschal et al., 1987Paschal B.M. Shpetner H.S. Vallee R.B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties.J. Cell Biol. 1987; 105: 1273-1282Crossref PubMed Google Scholar). Breakthrough experiments using nerve ligation assays identified kinesin-1 as a major motor for anterograde transport along the axon (Hirokawa et al., 1991Hirokawa N. Sato-Yoshitake R. Kobayashi N. Pfister K.K. Bloom G.S. Brady S.T. Kinesin associates with anterogradely transported membranous organelles in vivo.J. Cell Biol. 1991; 114: 295-302Crossref PubMed Google Scholar) and dynein as the motor for retrograde transport (Hirokawa et al., 1990Hirokawa N. Sato-Yoshitake R. Yoshida T. Kawashima T. Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo.J. Cell Biol. 1990; 111: 1027-1037Crossref PubMed Scopus (129) Google Scholar). Since these initial discoveries there has been considerable progress in understanding the mechanisms regulating the transport of organelles including mitochondria, lysosomes, autophagosomes, and endosomes (Figure 1), as well as the transport mechanisms involved in neurotrophic and injury signaling. Together, these studies support a model in which the regulation of transport is compartment specific. The complement of motors, adaptors, and scaffolding proteins bound to each cargo is organelle specific, leading to distinct patterns of motility and localization along the axon. Thus, while broad themes emerge, the specific mechanisms regulating the transport of each organelle or protein complex may be unique. Further, there is increasing evidence for the localized regulation of trafficking in key zones along the axon, such as the axon initial segment or in the distal axon. Here, we discuss both general themes and specific mechanisms involved in axonal transport. We will review recent progress and highlight some of the critical questions that remain, focusing on the mechanisms that regulate the dynamic trafficking of organelles along the axon. Microtubules, actin filaments, and intermediate filaments all contribute to the morphology and function of neurons, but axonal transport depends almost entirely on microtubules. Microtubules are polarized tubulin polymers with fast-growing plus ends and more stable minus ends, organized in a generally radial array in the soma with plus ends directed toward the cortex. In the axon, parallel microtubules form a unipolar array with plus ends oriented outward (Burton and Paige, 1981Burton P.R. Paige J.L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog.Proc. Natl. Acad. Sci. USA. 1981; 78: 3269-3273Crossref PubMed Google Scholar, Stepanova et al., 2003Stepanova T. Slemmer J. Hoogenraad C.C. Lansbergen G. Dortland B. De Zeeuw C.I. Grosveld F. van Cappellen G. Akhmanova A. Galjart N. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein).J. Neurosci. 2003; 23: 2655-2664Crossref PubMed Google Scholar), while in dendrites microtubule organization is more complex, with microtubules often organized in arrays with mixed polarity (Baas et al., 1988Baas P.W. Deitch J.S. Black M.M. Banker G.A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.Proc. Natl. Acad. Sci. USA. 1988; 85: 8335-8339Crossref PubMed Google Scholar, Kleele et al., 2014Kleele T. Marinković P. Williams P.R. Stern S. Weigand E.E. Engerer P. Naumann R. Hartmann J. Karl R.M. Bradke F. et al.An assay to image neuronal microtubule dynamics in mice.Nat. Commun. 2014; 5: 4827Crossref PubMed Google Scholar, Kwan et al., 2008Kwan A.C. Dombeck D.A. Webb W.W. Polarized microtubule arrays in apical dendrites and axons.Proc. Natl. Acad. Sci. USA. 2008; 105: 11370-11375Crossref PubMed Scopus (44) Google Scholar). In the cell body, microtubule minus ends may be rooted near the centrosome, but microtubules along axons are likely to be capped at their minus ends by a mechanism that is not yet understood (Kuijpers and Hoogenraad, 2011Kuijpers M. Hoogenraad C.C. Centrosomes, microtubules and neuronal development.Mol. Cell. Neurosci. 2011; 48: 349-358Crossref PubMed Scopus (33) Google Scholar). Microtubule-associated proteins, or MAPs, are bound along the length of axonal and dendritic microtubules. The canonical role for MAPs is to promote microtubule polymerization and stabilization; because of the high expression levels of MAPs in neurons, microtubules are generally more stable in these cells than in other cell types. MAPs may also function to regulate transport, as in vitro studies indicate they modulate the interaction of motors with the microtubule (Dixit et al., 2008bDixit R. Ross J.L. Goldman Y.E. Holzbaur E.L. Differential regulation of dynein and kinesin motor proteins by tau.Science. 2008; 319: 1086-1089Crossref PubMed Scopus (301) Google Scholar, Vershinin et al., 2007Vershinin M. Carter B.C. Razafsky D.S. King S.J. Gross S.P. Multiple-motor based transport and its regulation by Tau.Proc. Natl. Acad. Sci. USA. 2007; 104: 87-92Crossref PubMed Scopus (151) Google Scholar). The discovery of a specific class of MAPs, known as plus-end-interacting proteins or +TIPs, has shown that microtubules in axons can be dynamic. Live-cell imaging with GFP-labeled +TIPs that bind selectively to actively growing microtubule plus ends has shown that axonal microtubules exhibit the parameters of dynamic instability observed in nonneuronal cells, including slow growth and rapid shortening, punctuated by catastrophe and rescue events, respectively (Stepanova et al., 2003Stepanova T. Slemmer J. Hoogenraad C.C. Lansbergen G. Dortland B. De Zeeuw C.I. Grosveld F. van Cappellen G. Akhmanova A. Galjart N. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein).J. Neurosci. 2003; 23: 2655-2664Crossref PubMed Google Scholar, Stepanova et al., 2010Stepanova T. Smal I. van Haren J. Akinci U. Liu Z. Miedema M. Limpens R. van Ham M. van der Reijden M. Poot R. et al.History-dependent catastrophes regulate axonal microtubule behavior.Curr. Biol. 2010; 20: 1023-1028Abstract Full Text Full Text PDF PubMed Scopus (23) Google Scholar). The +TIPS EB1 and EB3 recruit additional binding partners to microtubule ends, many of which have a role in the localized regulation of axonal transport (Moughamian et al., 2013Moughamian A.J. Osborn G.E. Lazarus J.E. Maday S. Holzbaur E.L. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport.J. Neurosci. 2013; 33: 13190-13203Crossref PubMed Scopus (6) Google Scholar). Direct posttranslational modification of tubulin is widespread in neurons (Janke and Bulinski, 2011Janke C. Bulinski J.C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions.Nat. Rev. Mol. Cell Biol. 2011; 12: 773-786Crossref PubMed Scopus (159) Google Scholar). Microtubule modifications directly modulate the activities of motor proteins (Sirajuddin et al., 2014Sirajuddin M. Rice L.M. Vale R.D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications.Nat. Cell Biol. 2014; 16: 335-344Crossref PubMed Scopus (8) Google Scholar), potentially contributing to the polarized trafficking of motors into axons (Hammond et al., 2010Hammond J.W. Huang C.F. Kaech S. Jacobson C. Banker G. Verhey K.J. Posttranslational modifications of tubulin and the polarized transport of

Referência(s)