Artigo Revisado por pares

Valenzbindungsdiagramme – eine Hilfe zum Verständnis chemischer Reaktivität

1999; Wiley; Volume: 111; Issue: 5 Linguagem: Alemão

10.1002/(sici)1521-3757(19990301)111

ISSN

1521-3757

Autores

Sason Shaik, Avital Shurki,

Tópico(s)

Chemistry and Chemical Engineering

Resumo

Angewandte ChemieVolume 111, Issue 5 p. 616-657 Aufsatz Valenzbindungsdiagramme – eine Hilfe zum Verständnis chemischer Reaktivität Sason Shaik, Sason Shaik [email protected] Department of Organic Chemistry (and) The Lise Meitner-Minerva Center For Computational Quantum Chemistry, The Hebrew University, 91904 Jerusalem, Israel, Fax: (+ 972) 26585345Search for more papers by this authorAvital Shurki, Avital Shurki Department of Organic Chemistry (and) The Lise Meitner-Minerva Center For Computational Quantum Chemistry, The Hebrew University, 91904 Jerusalem, Israel, Fax: (+ 972) 26585345Search for more papers by this author Sason Shaik, Sason Shaik [email protected] Department of Organic Chemistry (and) The Lise Meitner-Minerva Center For Computational Quantum Chemistry, The Hebrew University, 91904 Jerusalem, Israel, Fax: (+ 972) 26585345Search for more papers by this authorAvital Shurki, Avital Shurki Department of Organic Chemistry (and) The Lise Meitner-Minerva Center For Computational Quantum Chemistry, The Hebrew University, 91904 Jerusalem, Israel, Fax: (+ 972) 26585345Search for more papers by this author First published: March 1, 1999 https://doi.org/10.1002/(SICI)1521-3757(19990301)111:5 3.0.CO;2-JCitations: 58AboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Eine einheitliche Beschreibung chemischer Reaktivität ermöglichen Valenzbindungsdiagramme, wie sie im Bild schematisch für einen einfachen Fall (nur Reaktant- und Produktzustände müssen betrachtet werden) und ein komplexeres System (ein Zwischenzustand spielt ebenfalls eine wichtige Rolle) gezeigt sind (RC = Reaktionskoordinate). Ihre Anwendung wird an Reaktivitäts- und mechanistischen Problemen der organischen und metallorganischen Chemie demonstriert: In-situ-DNA-Reparatur, C-F- und C-H-Aktivierung, SRN2c-Mechanismus, schrittweise vs. konzertierte Cycloaddition und vieles mehr. References 1 S. S. Shaik, J. Am. Chem. Soc. 1981, 103, 3692. 10.1021/ja00403a014 CASWeb of Science®Google Scholar 2 R. B. Woodward, R. Hoffmann, Angew. Chem. 1969, 81, 797; 10.1002/ange.19690812102 Google Scholar Angew. Chem. Int. Ed. Engl. 1969, 8, 781. 10.1002/anie.196907811 CASWeb of Science®Google Scholar 3(a) Zum Beispiel: M. G. Evans, M. Polanyi, Trans. Faraday Soc. 1938, 34, 11; 10.1039/tf9383400011 CASPubMedWeb of Science®Google Scholar(b) A. Warshel, R. M. Weiss, J. Am. Chem. Soc. 1980, 102, 6218; 10.1021/ja00540a008 CASWeb of Science®Google Scholar(c) W. T. A. M. van der Lugt, L. J. Osterhoff, J. Am. Chem. Soc. 1969, 91, 6042; 10.1021/ja01050a019 CASWeb of Science®Google Scholar(d) J. Michl, Top. Curr. Chem. 1974, 46, 1; 10.1007/BFb0009221 CASGoogle Scholar(e) “Unified Valence Bond Theory of Electronic Structure. Applications”: N. D. Epiotis, Lect. Notes Chem. 1983, 34, 1; Google Scholar(f) L. Salem, Science 1976, 191, 822. 10.1126/science.1251196 CASPubMedWeb of Science®Google Scholar 4(a) S. S. Shaik, Prog. Phys. Org. Chem. 1985, 15, 197; 10.1002/9780470171943.ch4 CASWeb of Science®Google Scholar(b) S. S. Shaik, H. B. Schlegel, S. Wolfe, Theoretical Aspects of Physical Organic Chemistry, Wiley-Interscience, New York, 1992; Google Scholar(c) S. S. Shaik, Acta Chem. Scand. 1990, 44, 205; 10.3891/acta.chem.scand.44-0205 CASWeb of Science®Google Scholar(d) S. S. Shaik, P. C. Hiberty in Theoretical Models for Chemical Bonding, Vol. 4 (Hrsg.: Z. B. Maksic), Springer, Heidelberg, 1991, S. 269; 10.1007/978-3-642-58177-9_8 Google Scholar(e) A. Pross, S. S. Shaik, Acc. Chem. Res. 1983, 16, 363; 10.1021/ar00094a001 CASWeb of Science®Google Scholar(f) A. Pross, Adv. Phys. Org. Chem. 1985, 21, 99; 10.1016/S0065-3160(08)60099-4 CASWeb of Science®Google Scholar(g) A. Pross, Theoretical and Physical Principles of Organic Reactivity, Wiley-Interscience, New York, 1995; Google Scholar(h) A. Pross, Acc. Chem. Res. 1985, 18, 212; 10.1021/ar00115a004 CASWeb of Science®Google Scholar(i) A. Pross, D. M. Chipman, Free Radicals Biol. Med. 1987, 3, 55. 10.1016/0891-5849(87)90039-6 CASPubMedWeb of Science®Google Scholar 5(a) P. Maitre, P. C. Hiberty, G. Ohanessian, S. S. Shaik, J. Phys. Chem. 1990, 94, 4089; 10.1021/j100373a038 CASWeb of Science®Google Scholar(b) G. Sini, S. Shaik, P. C. Hiberty, J. Chem. Soc. Perkin Trans. 2 1992, 1019; Google Scholar(c) G. Sini, S. S. Shaik, J.-M. Lefour, G. Ohanessian, P. C. Hiberty, J. Phys. Chem. 1989, 93, 5661, 10.1021/j100352a007 CASWeb of Science®Google Scholar(d) G. Sini, G. Ohanessian, P. C. Hiberty, S. S. Shaik, J. Am. Chem. Soc. 1990, 112, 1407; 10.1021/ja00160a018 CASWeb of Science®Google Scholar G. Sini, P. C. Hiberty, S. S. Shaik, J. Chem. Soc. Chem. Commun. 1989, 772, Google Scholar(e) P. Maitre, F. Volatron, P. C. Hiberty, S. S. Shaik, Inorg. Chem. 1990, 29, 3047; 10.1021/ic00341a038 CASWeb of Science®Google Scholar(f) P. R. Benneyworth, G. G. Balint-Kurti, M. J. Davis, I. H. Williams, J. Phys. Chem. 1992, 96, 4346. 10.1021/j100190a044 CASWeb of Science®Google Scholar 6(a) Für neuere Methoden mit guter Genauigkeit siehe z.B.: P. C. Hiberty, J. P. Flament, E. Noizet, Chem. Phys. Lett. 1992, 189, 259; 10.1016/0009-2614(92)85136-X CASWeb of Science®Google Scholar P. C. Hiberty, S. Humbel, C. P. Byrman, J. H. van Lenthe, J. Chem. Phys. 1994, 101, 5969; 10.1063/1.468459 CASWeb of Science®Google Scholar(b) W. A. Goddard III, L. B. Harding, Annu. Rev. Phys. Chem. 1978, 29, 363; 10.1146/annurev.pc.29.100178.002051 CASWeb of Science®Google Scholar A. F. Voter, W. A. Goddard III, J. Chem. Phys. 1981, 75, 3638; 10.1063/1.442436 CASWeb of Science®Google Scholar(c) J. Verbeek, J. H. Langenberg, C. P. Byrman, J. H. van Lenthe, TURTLE—an Ab Initio VB/VBSCF/VBCI Program, The oretical Chemistry Group, Debye Institute, University of Utrecht, 1993; Google Scholar J. Verbeek, J. H. van Lenthe, Int. J. Quantum Chem. 1991, XL, 201; 10.1002/qua.560400204 Web of Science®Google Scholar(d) D. L. Cooper, J. Gerratt, M. Raimondi, Adv. Chem. Phys. 1987, 69, 319; 10.1002/9780470142943.ch6 CASGoogle Scholar D. L. Cooper, J. Gerratt, M. Raimondi, Chem. Rev. 1991, 91, 929; 10.1021/cr00005a014 CASWeb of Science®Google Scholar(e) Y. Mo, Q. Zhang, J. Phys. Chem. 1995, 99, 8535; 10.1021/j100021a014 CASWeb of Science®Google Scholar Y. Mo, Z. Lin, W. Wu, Q. Zhang, J. Phys. Chem. 1996, 100, 6469; 10.1021/jp9526612 CASWeb of Science®Google Scholar(f) W. Wu, R. McWeeny, J. Chem. Phys. 1994, 101, 4826. 10.1063/1.467405 CASWeb of Science®Google Scholar 7(a) S. S. Shaik in New Theoretical Concepts for Understanding Organic Reactions, Vol. C267 (Hrsg.: J. Bertrán, I. G. Csizmadia), Kluwer, Dordrecht, 1989, S. 165; 10.1007/978-94-009-2313-3_7 Web of Science®Google Scholar(b) S. Shaik, J. Mol. Liq. 1994, 61, 49; 10.1016/0167-7322(94)00753-5 CASWeb of Science®Google Scholar(c) S. Shaik, P. C. Hiberty, Adv. Quantum Chem. 1995, 26, 99. 10.1016/S0065-3276(08)60112-4 CASWeb of Science®Google Scholar 8 D. Schröder, H. Schwarz, Angew. Chem. 1995, 107, 2126; 10.1002/ange.19951071805 Google Scholar Angew. Chem. Int. Ed. Engl. 1995, 34, 1973. 10.1002/anie.199519731 CASWeb of Science®Google Scholar 9 H. Zipse, Angew. Chem. 1994, 106, 2019; 10.1002/ange.19941061908 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1994, 33, 1985; 10.1002/anie.199419851 Web of Science®Google Scholar(b) H. Zipse, J. Am. Chem. Soc. 1994, 116, 10773. 10.1021/ja00102a048 CASWeb of Science®Google Scholar 10 S. S. Shaik, E. Duzy, A. Bartuv, J. Phys. Chem. 1990, 94, 6574. 10.1021/j100380a011 CASWeb of Science®Google Scholar 11 R. McWeeny, Methods of Molecular Quantum Mechanics, 2. Aufl., Academic Press, London, 1992, Kap. 4 und 7. Google Scholar 12 W. Heitler, F. London, Z. Phys. 1927, 44, 455. 10.1007/BF01397394 CASGoogle Scholar 13 S. Shaik, P. Maitre, G. Sini, P. C. Hiberty, J. Am. Chem. Soc. 1992, 114, 7861. 10.1021/ja00046a035 CASWeb of Science®Google Scholar 14(a) D. Lauvergnat, P. C. Hiberty, D. Danovich, S. Shaik, J. Phys. Chem. 1996, 100, 5715; 10.1021/jp960145l CASWeb of Science®Google Scholar(b) G. Sini, P. Maitre, P. C. Hiberty, S. S. Shaik, J. Mol. Struct. (THEOCHEM) 1991, 229, 163; 10.1016/0166-1280(91)90144-9 Google Scholar(c) H. Basch, P. Aped, S. Hoz, Mol. Phys. 1996, 89, 331. 10.1080/002689796173769 CASWeb of Science®Google Scholar 15 T. F. O'Malley, Adv. Atom. Mol. Phys. 1971, 7, 223. 10.1016/S0065-2199(08)60361-9 Google Scholar 16 R. A. Ogg, Jr., M. Polanyi, Trans. Faraday Soc. 1935, 31, 604. 10.1039/tf9353100604 CASGoogle Scholar 17 S. S. Shaik, J. Org. Chem. 1987, 52, 1563. 10.1021/jo00384a034 CASWeb of Science®Google Scholar 18 H. J. Kim, J. T. Hynes, J. Am. Chem. Soc. 1992, 114, 10508, 10528. 10.1021/ja00052a055 CASWeb of Science®Google Scholar 19(a) P. Delahay, Acc. Chem. Res. 1982, 15, 40; 10.1021/ar00074a002 CASWeb of Science®Google Scholar(b) M. J. Blandamer, M. F. Fox, Chem. Rev. 1970, 70, 59. 10.1021/cr60263a002 CASWeb of Science®Google Scholar 20 S. S. Shaik, J. Am. Chem. Soc. 1984, 106, 1227. 10.1021/ja00317a010 CASWeb of Science®Google Scholar 21 C. D. Ritchie, J. Am. Chem. Soc. 1983, 105, 7313. 10.1021/ja00363a018 CASWeb of Science®Google Scholar 22 H. Mayr, M. Patz, Angew. Chem. 1994, 106, 990; 10.1002/ange.19941060905 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1994, 33, 938. 10.1002/anie.199409381 Web of Science®Google Scholar 23(a) H. Feinberg, H. M. Greenblatt, G. Shoham, J. Chem. Inf. Comput. Sci. 1993, 33, 501; 10.1021/ci00013a030 CASPubMedWeb of Science®Google Scholar(b) H. Feinberg, H. M. Greenblatt, V. Behar, C. Gilon, S. Cohen, A. Bino, G. Shoham, Acta Crystallogr. Sect. D 1995, 51, 428. 10.1107/S0907444995003350 CASPubMedWeb of Science®Google Scholar 24(a) A. Warshel, Acc. Chem. Res. 1981, 14, 284; 10.1021/ar00069a004 CASWeb of Science®Google Scholar(b) A. Warshel, Proc. Natl. Acad. Sci. USA 1978, 75, 5250. 10.1073/pnas.75.11.5250 CASPubMedWeb of Science®Google Scholar 25(a) J. M. Tedder, J. C. Walton, Adv. Phys. Org. Chem. 1978, 16, 51; 10.1016/S0065-3160(08)60086-6 CASGoogle Scholar(b) B. Giese, X. Beyrich-Graf, J. Burger, C. Kesselheim, M. Senn, T. Schäfer, Angew. Chem. 1993, 105, 1850; 10.1002/ange.19931051244 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1993, 32, 1742. 10.1002/anie.199317421 Web of Science®Google Scholar 26 Z. Rappoport, Acc. Chem. Res. 1981, 14, 7. 10.1021/ar00061a002 CASWeb of Science®Google Scholar 27 A. Sevin, P. C. Hiberty, J.-M. Lefour, J. Am. Chem. Soc. 1987, 109, 1845. 10.1021/ja00240a040 CASWeb of Science®Google Scholar 28(a) H. H. Cornehl, G. Hornung, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 9960; 10.1021/ja961343t CASWeb of Science®Google Scholar(b) J. N. Harvey, D. Schröder, W. Koch, D. Danovich, S. Shaik, H. Schwarz, Chem. Phys. Lett. 1997, 278, 391. 10.1016/S0009-2614(97)01112-3 CASWeb of Science®Google Scholar 29 R. Hoffmann, Angew. Chem. 1982, 94, 725; 10.1002/ange.19820941002 Google Scholar Angew. Chem. Int. Ed. Engl. 1982, 21, 711. 10.1002/anie.198207110 CASPubMedWeb of Science®Google Scholar 30 H. Yamataka, S. Nagase, J. Org. Chem. 1988, 53, 3232. 10.1021/jo00249a017 CASWeb of Science®Google Scholar 31(a) A. Pross, H. Yamataka, S. Nagase, J. Phys. Org. Chem. 1991, 4, 135; 10.1002/poc.610040303 CASWeb of Science®Google Scholar(b) M. W. Wong, A. Pross, L. Radom, Isr. J. Chem. 1993, 33, 415. 10.1002/ijch.199300048 CASWeb of Science®Google Scholar 32 D. J. Bellville, D. D. Wirth, N. L. Bauld, J. Am. Chem. Soc. 1981, 103, 718; 10.1021/ja00393a061 CASWeb of Science®Google Scholar D. J. Bellville, N. L. Bauld, J. Am. Chem. Soc. 1982, 104, 2665; 10.1021/ja00373a069 CASWeb of Science®Google Scholar R. A. Pabon, D. J. Bellville, N. L. Bauld, J. Am. Chem. Soc. 1983, 105, 5158. 10.1021/ja00353a065 CASWeb of Science®Google Scholar 33 F. Bernardi, A. Bottoni, M. Olivucci, A. Venturini, M. A. Robb, J. Chem. Soc. Faraday Trans. 1994, 90, 1617. 10.1039/ft9949001617 CASWeb of Science®Google Scholar 34 P. Jungwirth, T. Bally, J. Am. Chem. Soc. 1993, 115, 5783. 10.1021/ja00066a051 CASWeb of Science®Google Scholar 35 Die recht geringe Lokalisierungsenergie des Kations wird der Einfachheit halber vernachlässigt; siehe auch: F. M. Bickelhaupt, R. Hoffmann, R. D. Levine, J. Phys. Chem. A 1997, 101, 8255. 10.1021/jp971005u CASWeb of Science®Google Scholar 36(a) T. P. Begley, Acc. Chem. Res. 1994, 27, 394; 10.1021/ar00048a002 CASWeb of Science®Google Scholar(b) H.-W. Park, S.-T. Kim, A. Sancar, J. Deisenhofer, Science 1995, 268, 1866. 10.1126/science.7604260 CASPubMedWeb of Science®Google Scholar 37 A. Ioffe, S. Shaik, J. Chem. Soc. Perkin Trans. 2 1992, 2101. Google Scholar 38(a) E. T. Seidl, R. S. Grev, H. F. Schaefer III, J. Am. Chem. Soc. 1992, 114, 3643; 10.1021/ja00036a011 CASWeb of Science®Google Scholar(b) F. Bernardi, A. Bottoni, M. Olivucci, M. A. Robb, A. Venturini, J. Am. Chem. Soc. 1993, 115, 3322. 10.1021/ja00061a038 CASWeb of Science®Google Scholar 39(a) R. West, Angew. Chem. 1987, 99, 1231; 10.1002/ange.19870991204 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1987, 26, 1201; 10.1002/anie.198712013 Web of Science®Google Scholar(b) Y. Apeloig in The Chemistry of Organic Silicon Compounds (Hrsg.: S. Patai, Z. Rappoport), Wiley, Chichester, 1989, Kap. 2. 10.1002/0470025107.ch2 Google Scholar 40 S. Shaik, A. Ioffe, unveröffentlichte Ergebnisse. Google Scholar 41 S. S. Shaik, P. C. Hiberty, G. Ohanessian, J.-M. Lefour, J. Phys. Chem. 1988, 92, 5086. 10.1021/j100329a008 CASWeb of Science®Google Scholar 42 M. J. S. Dewar, J. Am. Chem. Soc. 1984, 106, 209. 10.1021/ja00313a042 CASWeb of Science®Google Scholar 43 D. L. King, D. R. Herschbach, Faraday Discuss. Chem. Soc. 1973, 55, 331. 10.1039/dc9735500331 CASWeb of Science®Google Scholar 44(a) G. K. Cook, J. M. Mayer, J. Am. Chem. Soc. 1994, 116, 1855; 10.1021/ja00084a029 CASWeb of Science®Google Scholar(b) G. K. Cook, J. M. Mayer, J. Am. Chem. Soc. 1995, 117, 7139; 10.1021/ja00132a014 CASWeb of Science®Google Scholar(c) K. A. Gardner, J. M. Mayer, Science 1995, 269, 1849. 10.1126/science.7569922 CASPubMedWeb of Science®Google Scholar 45 A. K. Rappé, W. A. Goddard III, J. Am. Chem. Soc. 1982, 104, 3287. 10.1021/ja00376a006 CASWeb of Science®Google Scholar 46(a) A. Fiedler, D. Schröder, S. Shaik, H. Schwarz, J. Am. Chem. Soc. 1994, 116, 10734; 10.1021/ja00102a043 CASWeb of Science®Google Scholar(b) M. F. Ryan, A. Fiedler, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 1995, 117, 2033; 10.1021/ja00112a017 CASWeb of Science®Google Scholar(c) Y.-M. Chen, D. E. Clemmer, P. B. Armentrout, J. Am. Chem. Soc. 1994, 116, 7815; 10.1021/ja00096a044 CASWeb of Science®Google Scholar(d) D. E. Clemmer, Y.-M. Chen, F. A. Khan, P. B. Armentrout, J. Phys. Chem. 1994, 98, 6522; 10.1021/j100077a017 CASWeb of Science®Google Scholar(e) S. Shaik, D. Danovich, A. Fiedler, D. Schröder, H. Schwarz, Helv. Chim. Acta 1995, 78, 1393; 10.1002/hlca.19950780602 CASWeb of Science®Google Scholar(f) S. Shaik, M. Filatov, J. Phys. Chem. 1998, 102, 3835. 10.1021/jp980929u Web of Science®Google Scholar 47(a) C. L. Lasko, R. M. Miller, D. S. Tinti, Chem. Phys. Lett. 1986, 130, 359; 10.1016/0009-2614(86)80484-5 CASWeb of Science®Google Scholar(b) R. M. Miller, D. S. Tinti, D. A. Case, Inorg. Chem. 1989, 28, 2738. 10.1021/ic00313a010 CASWeb of Science®Google Scholar 48 E. Buncel, S. S. Shaik, I.-H. Um, S. Wolfe, J. Am. Chem. Soc. 1988, 110, 1275. 10.1021/ja00212a041 CASWeb of Science®Google Scholar 49 I. M. Kovach, J. P. Elrod, R. L. Schowen, J. Am. Chem. Soc. 1980, 102, 7530. 10.1021/ja00545a023 CASWeb of Science®Google Scholar 50 D. G. Oakenfull, T. Riley, V. Gold, J. Chem. Soc. Chem. Commun. 1966, 385; Google Scholar V. Gold, D. G. Oakenfull, T. Riley, J. Chem. Soc. B 1968, 515. Google Scholar 51 J. K. Kochi, Angew. Chem. 1988, 100, 1331; 10.1002/ange.19881001008 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1988, 27, 1227. 10.1002/anie.198812273 Web of Science®Google Scholar 52 S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am. Chem. Soc. 1987, 109, 305; 10.1021/ja00236a003 CASWeb of Science®Google Scholar M. Ishikawa, S. Fukuzumi, J. Chem. Soc. Faraday Trans. 1990, 86, 3531. 10.1039/ft9908603531 CASWeb of Science®Google Scholar 53 E. Baciocchi, L. Mandolini, Tetrahedron 1987, 43, 4035. 10.1016/S0040-4020(01)81687-2 CASWeb of Science®Google Scholar 54 Eine Diskussion der ET-Mechanismen bei Radikalionenreaktionen findet sich in: L. Eberson, S. S. Shaik, J. Am. Chem. Soc. 1990, 112, 4484. Bemerkenswert ist, wie sich die VB-Situationen für diesen Fall und für den in Abbildung 30 dargestellten ET zwischen geschlossenschaligen Reaktanten unterscheiden. 10.1021/ja00167a055 CASWeb of Science®Google Scholar 55 L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer, Berlin, 1987. 10.1007/978-3-642-72544-9 Google Scholar 56(a) J. W. Verhoeven, W. van Gerresheim, F. M. Martens, S. M. van der Kerk, Tetrahedron 1986, 42, 975; 10.1016/S0040-4020(01)87504-9 CASWeb of Science®Google Scholar(b) Y. Apeloig, O. Merin-Aharoni, D. Danovich, A. Ioffe, S. Shaik, Isr. J. Chem. 1993, 33, 387. 10.1002/ijch.199300046 CASWeb of Science®Google Scholar 57 M. Patz, H. Mayr, J. Maruta, S. Fukuzumi, Angew. Chem. 1995, 107, 1351; 10.1002/ange.19951071123 Google Scholar Angew. Chem. Int. Ed. Engl. 1995, 34, 1225. 10.1002/anie.199512251 CASWeb of Science®Google Scholar 58 H. H. Cornehl, C. Heinemann, D. Schröder, H. Schwarz, Organometallics 1995, 14, 992. 10.1021/om00002a053 CASWeb of Science®Google Scholar 59 M.-D. Su, Inorg. Chem. 1995, 34, 3829. 10.1021/ic00118a036 CASWeb of Science®Google Scholar 60 A. Pross, R. A. Moss, Tetrahedron Lett. 1990, 31, 4553. 10.1016/S0040-4039(00)97674-3 CASWeb of Science®Google Scholar 61 S. Goldstein, G. Czapski, H. Cohen, D. Meyerstein, S. Shaik, J. Chem. Soc. Faraday Trans. 1993, 89, 4045. 10.1039/ft9938904045 CASWeb of Science®Google Scholar 62 S. Shaik, A. C. Reddy, A. Ioffe, J. P. Dinnocenzo, D. Danovich, J. K. Cho, J. Am. Chem. Soc. 1995, 117, 3205. 10.1021/ja00116a025 CASWeb of Science®Google Scholar 63 D. Cohen, R. Bar, S. S. Shaik, J. Am. Chem. Soc. 1986, 108, 231. 10.1021/ja00262a008 CASWeb of Science®Google Scholar 64 S. S. Shaik, P. C. Hiberty, J.-M. Lefour, G. Ohanessian, J. Am. Chem. Soc. 1987, 109, 363. 10.1021/ja00236a013 CASWeb of Science®Google Scholar 65 A. Demolliens, O. Eisenstein, P. C. Hiberty, J. M. Lefour, G. Ohanessian, S. S. Shaik, F. Volatron, J. Am. Chem. Soc. 1989, 111, 5623. 10.1021/ja00197a019 CASWeb of Science®Google Scholar 66 Siehe den Anhang zu Kapitel 3 in Lit. [4b], S. 128–131. Google Scholar 67 L. Eberson, R. González-Luque, M. Merchán, F. Radner, B. O. Roos, S. Shaik, J. Chem. Soc. Perkin Trans. 2 1997, 463. Google Scholar 68 Von Gleichung (8) kann ein Ausdruck abgeleitet werden, der die mikroskopische Reversibilität erhält, allerdings ziemlich komplex ist: \documentclass{article}\pagestyle{empty}\begin{document}$$ \Delta E^ \ne = \frac{{(f_{\rm r} + f_{\rm p})G_{\rm r} G_{\rm p}}}{{(G_{\rm r} + G_{\rm p})}} + 0.5\Delta E_{{\rm rp}} + x\Delta E_{{\rm rp}}^2 - B $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ x = \frac{{(1 - f_{\rm r} - f_{\rm p})}}{{(G_{\rm r} + G_{\rm p})}}$$\end{document} Unter Verwendung von Mittelwerten sowohl für f als auch für G erhält man: \documentclass{article}\pagestyle{empty}\begin{document}$$ \Delta E^ \ne = f_{{\rm av}} G_{{\rm av}} + 0.5\Delta E_{{\rm rp}} + (0.5 - f_{{\rm av}})\frac{{\Delta E_{{\rm rp}}^{\rm 2}}}{{G_{{\rm av}}}} - B $$\end{document} Google Scholar 69(a) S. S. Shaik, Nouv. J. Chim. 1983, 7, 201; CASWeb of Science®Google Scholar(b) S. S. Shaik, J. Am. Chem. Soc. 1983, 105, 4359. 10.1021/ja00351a039 CASWeb of Science®Google Scholar 70(a) S. S. Shaik, Can. J. Chem. 1986, 64, 96; 10.1139/v86-016 CASWeb of Science®Google Scholar(b) S. S. Shaik, Isr. J. Chem. 1985, 26, 367. 10.1002/ijch.198500121 CASWeb of Science®Google Scholar 71 G. Sini, Dissertation, Université de Paris-Sud, Orsay, Frankreich, 1991. Google Scholar 72(a) B. D. Wladkowski, J. L. Wilbur, J. I. Brauman, J. Am. Chem. Soc. 1994, 116, 2471; 10.1021/ja00085a030 CASWeb of Science®Google Scholar(b) B. D. Wladkowski, K. F. Lim, W. D. Allen, J. I. Brauman, J. Am. Chem. Soc. 1992, 114, 9136. 10.1021/ja00049a055 CASWeb of Science®Google Scholar 73(a) J. Hine, J. Am. Chem. Soc. 1950, 72, 2438; 10.1021/ja01162a024 CASWeb of Science®Google Scholar(b) J. Hine, A. M. Dowell, Jr., J. Am. Chem. Soc. 1954, 76, 2688; 10.1021/ja01639a027 CASWeb of Science®Google Scholar(c) J. Hine, C. H. Thomas, S. J. Ehrenson, J. Am. Chem. Soc. 1955, 77, 3886; 10.1021/ja01619a061 CASWeb of Science®Google Scholar(d) J. Hine, S. J. Ehrenson, W. H. Brader, Jr., J. Am. Chem. Soc. 1956, 78, 2282. 10.1021/ja01591a069 CASWeb of Science®Google Scholar 74(a) R. F. Hudson, G. Klopman, J. Chem. Soc. 1962, 1062; Google Scholar V. P. Vitullo, J. Grabowski, S. Sridharan, J. Am. Chem. Soc. 1980, 102, 6463; 10.1021/ja00541a014 CASWeb of Science®Google Scholar F. P. Ballistreri, E. Maccarone, A. Mamo, J. Org. Chem. 1976, 41, 3364; 10.1021/jo00883a005 CASWeb of Science®Google Scholar(b) S. D. Ross, M. Finkelstein, R. C. Petersen, J. Am. Chem. Soc. 1968, 90, 6411; 10.1021/ja01025a029 CASWeb of Science®Google Scholar A. Halvorsen, J. Songstad, J. Chem. Soc. Chem. Commun. 1978, 327; Google Scholar(c) C. Eaborn, J. C. Jeffrey, J. Chem. Soc. 1954, 4266; Google Scholar M. A. Cook, C. Eaborn, D. R. M. Walton, J. Organomet. Chem. 1971, 29, 389. 10.1016/S0022-328X(00)85286-9 CASWeb of Science®Google Scholar 75 H. Mayr in Cationic Polymerizations (Hrsg.: K. Matyjaszewski), Marcel Dekker, New York, 1996, Kap. 2, S. 51. Web of Science®Google Scholar 76 S. S. Shaik, E. Canadell, J. Am. Chem. Soc. 1990, 112, 1446. 10.1021/ja00160a023 CASWeb of Science®Google Scholar 77 E. Canadell, O. Eisenstein, G. Ohanessian, J. M. Poblet, J. Phys. Chem. 1985, 89, 4856. 10.1021/j100268a039 CASWeb of Science®Google Scholar 78 S. Shaik, A. C. Reddy, J. Chem. Soc. Faraday Trans. 1994, 90, 1631. 10.1039/ft9949001631 CASWeb of Science®Google Scholar 79 M. N. Glukhovtsev, A. Pross, L. Radom, J. Am. Chem. Soc. 1995, 117, 2024 Die Barriere für XF wird verwendet, um den Wert für f zu erhalten, der dann für alle anderen Reaktionen übernommen wird. 10.1021/ja00112a016 CASWeb of Science®Google Scholar 80 G. Ohanessian, P. C. Hiberty, J.-M. Lefour, J.-P. Flament, S. S. Shaik, Inorg. Chem. 1988, 27, 2219. 10.1021/ic00286a004 CASWeb of Science®Google Scholar 81 Hier ist B = Kab für die beiden entarteten Orbitale (a | und |b), und die Größe δE ⟹ ϕ*) in Abbildung 36 wäre 2Kab. Google Scholar 82 M. G. Evans, E. Warhurst, Trans. Faraday Soc. 1938, 34, 614; 10.1039/tf9383400614 CASGoogle Scholar M. G. Evans, Trans. Faraday Soc. 1939, 35, 824. 10.1039/tf9393500824 CASGoogle Scholar 83 M. A. Robb, F. Bernardi in New Theoretical Concepts for Understanding Organic Reactions, Vol. C267 (Hrsg.: J. Bertrán, I. G. Csizmadia), Kluwer, Dordrecht, 1989, S. 101; 10.1007/978-94-009-2313-3_5 Google Scholar F. Bernardi, M. Olivucci, M. A. Robb in New Theoretical Concepts for Understanding Organic Reactions, Vol. C267 (Hrsg.: J. Bertrán, I. G. Csizmadia), Kluwer, Dordrecht, 1989, S. 147. 10.1007/978-94-009-2313-3_6 Google Scholar 84(a) K. N. Houk, Y. Li, J. D. Evanseck, Angew. Chem. 1992, 104, 711; 10.1002/ange.19921040606 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1992, 31, 682; 10.1002/anie.199206821 Web of Science®Google Scholar(b) K. N. Houk, J. González, Y. Li, Acc. Chem. Res. 1995, 28, 81; 10.1021/ar00050a004 CASWeb of Science®Google Scholar(c) B. R. Beno, S. Wilsey, K. N. Houk, J. Am. Chem. Soc., im Druck. Man beachte, daß im Zewail-Experiment das Diradikal möglicherweise im angeregten Zustand entsteht ( K. N. Houk, persönliche Mitteilung). Google Scholar 85 B. A. Horn, J. L. Herek, A. H. Zewail, J. Am. Chem. Soc. 1996, 118, 8755. 10.1021/ja9620696 CASWeb of Science®Google Scholar 86 R. S. Mulliken, J. Am. Chem. Soc. 1952, 74, 811; 10.1021/ja01123a067 CASWeb of Science®Google Scholar R. S. Mulliken, J. Phys. Chem. 1952, 56, 801. 10.1021/j150499a001 CASWeb of Science®Google Scholar 87 N. D. Epiotis, Angew. Chem. 1974, 86, 825; 10.1002/ange.19740862302 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1974, 13, 751; 10.1002/anie.197407511 Web of Science®Google Scholar N. D. Epiotis, Theory of Organic Reactions, Springer, Berlin, 1978. 10.1007/978-3-642-66827-2 Google Scholar 88 S. S. Shaik, J. P. Dinnocenzo, J. Org. Chem. 1990, 55, 3434. 10.1021/jo00298a004 CASWeb of Science®Google Scholar 89 L. Eberson, M. P. Hartshorn, F. Radner, M. Merchán, B. O. Roos, Acta Chem. Scand. 1993, 47, 176; 10.3891/acta.chem.scand.47-0176 CASWeb of Science®Google Scholar L. Eberson, F. Radner, Acta Chem. Scand. 1992, 46, 312, 802. 10.3891/acta.chem.scand.46-0312 CASWeb of Science®Google Scholar 90 J. P. Dinnocenzo, W. P. Todd, T. R. Simpson, I. R. Gould, J. Am. Chem. Soc. 1990, 112, 2462. 10.1021/ja00162a081 CASWeb of Science®Google Scholar 91 S. Shaik, A. C. Reddy, unveröffentlichte Ergebnisse. Google Scholar 92(a) G. N. Sastry, S. Shaik, J. Am. Chem. Soc. 1995, 117, 3290; 10.1021/ja00116a041 CASWeb of Science®Google Scholar(b) G. N. Sastry, A. C. Reddy, S. Shaik, Angew. Chem. 1995, 107, 1619; 10.1002/ange.19951071330 Google Scholar Angew. Chem. Int. Ed. Engl. 1995, 34, 1495; 10.1002/anie.199514951 CASWeb of Science®Google Scholar(c) G. N. Sastry, S. Shaik, J. Phys. Chem. 1996, 100, 12241. 10.1021/jp952827z CASWeb of Science®Google Scholar 93 N. Kimura, S. Takamuku, J. Am. Chem. Soc. 1994, 116, 4087; 10.1021/ja00088a058 CASWeb of Science®Google Scholar N. Kimura, S. Takamuku, Bull. Chem. Soc. Jpn. 1991, 64, 2433. 10.1246/bcsj.64.2433 CASWeb of Science®Google Scholar 94 Dieses System (siehe Lit. [92c]) wurde S. S. während eines Freisemesters an der University of Rochester von J. P. Dinnocenzo vorgeschlagen. Google Scholar 95 Dieses System wurde S. S. nach seinem Vortrag auf dem International Symposium of the Volkswagenstiftung on Intra- and Intermolecular Electron Transfer in Berlin, 1996, M. von Schmittel vorgeschlagen. Google Scholar 96(a) J. H. Incremona, C. J. Upton, J. Am. Chem. Soc. 1972, 94, 301; 10.1021/ja00756a066 CASWeb of Science®Google Scholar C. J. Upton, J. H. Incremona, J. Org. Chem. 1976, 41, 523; 10.1021/jo00865a024 CASWeb of Science®Google Scholar(b) B. B. Jarvis, J. Org. Chem. 1970, 35, 924; 10.1021/jo00829a011 CASWeb of Science®Google Scholar(c) G. G. Maynes, D. E. Applequist, J. Am. Chem. Soc. 1973, 95, 856; 10.1021/ja00784a038 CASWeb of Science®Google Scholar(d) K. J. Shea, P. S. Skell, J. Am. Chem. Soc. 1973, 95, 6728; 10.1021/ja00801a033 CASWeb of Science®Google Scholar(e) M. L. Poutsma, J. Am. Chem. Soc. 1965, 87, 4293. 10.1021/ja00947a013 CASWeb of Science®Google Scholar 97(a) Die VBSCD-Auswahlregel beruht auf dem Produkt zweier Wechselwirkungen, (øR, s*CC), und (øR, s*CC), und macht somit eine eindeutige Vorhersage. Die Grenzorbital-MO-Theorie sagt dagegen voraus, daß die Summe dieser beiden Wechselwirkungen die Regioselektivität bestimmt. Die Summe verhält sich jedoch bei qualitativen Überlegungen unentschieden. Wenn eine der beiden Wechselwirkungen wichtiger ist als die andere, ist es nicht einfach zu entscheiden, welche dies sein würde (siehe Lit. [90]). Google Scholar12 (b) M. Schmittel, C. Wöhrle, I. Bonn, Chem. Eur. J. 1996, 2, 1031. 10.1002/chem.19960020820 CASWeb of Science®Google Scholar 98 S. Shaik in Encyclopedia of Computational Chemistry, Vol. 5 (Hrsg.: P. von R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer), Wiley, Chichester, 1998, 3143–3159. Google Scholar 99 G. L. Fox, H. B. Schlegel, J. Phys. Chem. 1992, 96, 298. 10.1021/j100180a056 CASWeb of Science®Google Scholar 100(a) D. Danovich, S. Shaik, J. Am. Chem. Soc. 1997, 119, 1773; 10.1021/ja963033g CASWeb of Science®Google Scholar(b) S. Shaik, M. Filatov, D. Schröder, H. Schwarz, Chem. Eur. J. 1998, 4, 193. 10.1002/(SICI)1521-3765(19980210)4:2 3.0.CO;2-Q CASWeb of Science®Google Scholar 101 A. Warshel, A. Papazyan, P. A. Kollman, Science 1995, 269, 102; 10.1126/science.7661987 CASPubMedWeb of Science®Google Scholar W. W. Cleland, M. M. Kreevoy, Science 1995, 269, 104; 10.1126/science.269.5220.104 CASPubMedWeb of Science®Google Scholar P. A. Frey, Science 1995, 269, 104. 10.1126/science.269.5220.104-a CASPubMedWeb of Science®Google Scholar 102 B. S. Ault, Acc. Chem. Res. 1992, 15, 103 Die matrixisolierten Wasserstoffdihalogen-Anionen XHX− (XCl, Br, I) sind vollständig oder fast zentrosymmetrisch. Der Einfluß des Gegenions ist jedoch nicht klar. Unsere theoretischen Ergebnisse (QCISD/6-311 + + G(3p,3d)) sagen für ClHCl− zwei Minima mit einer sehr niedrigen Barriere voraus. 10.1021/ar00076a002 Web of Science®Google Scholar 103 Prinzipiell ähnliche Ergebnisse haben unsere Berechnungen mit der in Lit. [6a,b] beschriebenen BOVB-Theorie ergeben. Google Scholar 104 Diese Resonanzenergie unterscheidet sich vom B-Wert für das entsprechende VBSCD, der relativ zu einer Lewis-Referenzstruktur zu 32 kcal mol−1 abgeschätzt wurde. [71, 78] Google Scholar 105(a) R. J. P. Corriu, M. Henner, J. Organomet. Chem. 1974, 74, 1; 10.1016/S0022-328X(00)83756-0 CASWeb of Science®Google Scholar(b) A. E. Reed, P. von R. Schleyer, J. Am. Chem. Soc. 1990, 112, 1434. 10.1021/ja00160a022 CASWeb of Science®Google Scholar 106 S. Harder, A. Streitwieser, J. T. Petty, P. von R. Schleyer, J. Am. Chem. Soc. 1995, 117, 3253. 10.1021/ja00116a029 CASWeb of Science®Google Scholar 107(a) R. Huisgen, Acc. Chem. Res. 1977, 10, 117, 199; 10.1021/ar50112a003 CASWeb of Science®Google Scholar(b) J. Sauer, R. Sustmann, Angew. Chem. 1980, 92, 773; 10.1002/ange.19800921004 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1980, 19, 779. 10.1002/anie.198007791 Web of Science®Google Scholar 108(a) R. Sustmann, M. Rogge, U. Nüchter, H. Bandmann, Chem. Ber. 1992, 125, 1647; 10.1002/cber.19921250721 CASWeb of Science®Google Scholar(b) R. Sustmann, M. Rogge, U. Nüchter, J. Harvey, Chem. Ber. 1992, 125, 1665; 10.1002/cber.19921250723 CASWeb of Science®Google Scholar(c) M. Rese, M. Dern, K. Lücking, R. Sustmann, Liebigs Ann. 1995, 1139; 10.1002/jlac.1995199507155 Google Scholar(d) R. Sustmann, M. Rogge, U. Nüchter, H. Bandmann, Chem. Ber. 1992, 125, 1657; 10.1002/cber.19921250722 CASWeb of Science®Google Scholar(e) K. Lücking, M. Rese, R. Sustmann, Liebigs Ann. 1995, 1129. 10.1002/jlac.1995199507154 Google Scholar 109(a) M. N. Glukhovtsev, A. Pross, L. Radom, J. Am. Chem. Soc. 1994, 116, 5961. 10.1021/ja00092a054 CASWeb of Science®Google Scholar12 (b) Es sei angemerkt, daß die hohe Barriere für den π-Angriff am substituierten Kohlenstoffatom in Lit. [63] analysiert wurde. Diese höhere π-Barriere gibt letztlich den Ausschlag für die Bevorzugung des SN2-artigen Angriffs. T. Okuyama, M. Ochiai, J. Am. Chem. Soc. 1997, 119, 4785. 10.1021/ja9705607 CASWeb of Science®Google Scholar 110 H. Zipse, J. Chem. Soc. Perkin Trans. 2 1997, 2691. Google Scholar 111 H. Zipse, J. Am. Chem. Soc. 1997, 119, 1087, 2889; 10.1021/ja963249i CASWeb of Science®Google Scholar H. Zipse, J. Chem. Soc. Perkin Trans. 2 1996, 1797. Google Scholar 112 B. Giese, X. Beyrich-Graf, J. Burger, C. Kesselheim, M. Senn, T. Schäfer, Angew. Chem. 1993, 105, 1850; 10.1002/ange.19931051244 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1993, 32, 1742. 10.1002/anie.199317421 Web of Science®Google Scholar 113(a) G. N. Sastry, D. Danovich, S. Shaik, Angew. Chem. 1996, 108, 1208; 10.1002/ange.19961081025 Google Scholar Angew. Chem. Int. Ed. Engl. 1996, 35, 1098; 10.1002/anie.199610981 CASWeb of Science®Google Scholar(b) S. Shaik, D. Danovich, G. N. Sastry, P. Y. Ayala, H. B. Schlegel, J. Am. Chem. Soc. 1997, 119, 9237; 10.1021/ja971105d CASWeb of Science®Google Scholar(c) G. N. Sastry, S. Shaik, J. Am. Chem. Soc. 1998, 120, 2131. 10.1021/ja972746b CASWeb of Science®Google Scholar 114 H. B. Schlegel, J. Chem. Soc. Faraday Trans. 1994, 90, 1569; 10.1039/ft9949001569 CASWeb of Science®Google Scholar P. Valtazanos, K. Ruedenberg, Theor. Chim. Acta 1986, 69, 281. 10.1007/BF00527705 CASWeb of Science®Google Scholar 115 A. C. Reddy, D. Danovich, A. Ioffe, S. Shaik, J. Chem. Soc. Perkin Trans. 2 1995, 1525. Google Scholar 116 F. Bernardi, M. Olivucci, M. Robb, Isr. J. Chem. 1993, 33, 265. 10.1002/ijch.199300033 CASWeb of Science®Google Scholar 117 U. Manthe, H. Köppel, J. Chem. Phys. 1990, 93, 1669. Web of Science®Google Scholar 118(a) D. M. Cyr, G. A. Bishea, M. G. Scranton, M. A. Johnson, J. Chem. Phys. 1992, 97, 5911; 10.1063/1.463752 CASWeb of Science®Google Scholar(b) M. Lipson, A. A. Deniz, K. S. Peters, J. Am. Chem. Soc. 1996, 118, 2992; 10.1021/ja9537991 CASWeb of Science®Google Scholar(c) H. Quast, K. Knoll, E.-M. Peters, K. Peters, H. G. von Schnering, Chem. Ber. 1993, 126, 1047. 10.1002/cber.19931260427 CASWeb of Science®Google Scholar Citing Literature Volume111, Issue5March 1, 1999Pages 616-657 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX