Revisão Acesso aberto Revisado por pares

Neurotransmitters, signal transduction and second-messengers in Alzheimer's disease

1996; Wiley; Volume: 94; Issue: S165 Linguagem: Inglês

10.1111/j.1600-0404.1996.tb05869.x

ISSN

1600-0404

Autores

Richard F. Cowburn, Christopher J. Fowler, Cora O’Neill,

Tópico(s)

Neurological Disorders and Treatments

Resumo

Acta Neurologica ScandinavicaVolume 94, Issue S165 p. 25-32 Neurotransmitters, signal transduction and second-messengers in Alzheimer's disease R. F. Cowburn, Corresponding Author R. F. Cowburn Alzheimer's Disease Research Centre, Karolinska Institute, StockholmAlzheimer's Disease Research Centre, Karolinska Institute Department of Clinical Neuroscience and Family Medicine, Section for Geriatric Medicine, NOVUM, KFC, S-141 86 Huddinge, SwedenSearch for more papers by this authorC. J. Fowler, C. J. Fowler Department of Pharmacology, Umeå University, SwedenSearch for more papers by this authorC. O'Neill, C. O'Neill Department of Biochemistry, University College, Lee Maltings, Cork, IrelandSearch for more papers by this author R. F. Cowburn, Corresponding Author R. F. Cowburn Alzheimer's Disease Research Centre, Karolinska Institute, StockholmAlzheimer's Disease Research Centre, Karolinska Institute Department of Clinical Neuroscience and Family Medicine, Section for Geriatric Medicine, NOVUM, KFC, S-141 86 Huddinge, SwedenSearch for more papers by this authorC. J. Fowler, C. J. Fowler Department of Pharmacology, Umeå University, SwedenSearch for more papers by this authorC. O'Neill, C. O'Neill Department of Biochemistry, University College, Lee Maltings, Cork, IrelandSearch for more papers by this author First published: April 1996 https://doi.org/10.1111/j.1600-0404.1996.tb05869.xCitations: 20AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract It has long been assumed that widespread changes in postsynaptic neurotransmitter receptor function are not a feature of the disrupted neurotransmission seen in the brains with Alzheimer's disease (AD). However, recent evidence from postmortem brain and fibroblast studies suggests that both the neurotransmitter receptor/G-protein-modulated adenylyl cyclase and the phosphatidylinositol hydrolysis signal transduction cascades are disrupted in AD. Such disruptions may severely limit the functional integrity of key receptor types and undermine pharmacological attempts to ameliorate disease symptomatology through neurotransmitter replacement strategies. The involvement of some signalling mechanisms in the regulation of β-amyloid precursor protein metabolism suggests also that disrupted signal transduction may exacerbate AD pathology. References 1 Young AB, Penney JB Jr. Neurotransmitter receptors in Alzheimer disease. In: RD Terry, R. Katzman, KL Bick, eds. Alzheimer disease. New York: Raven Press, 1994: 293– 303. 2 Cowburn RF, Hardy JA, Roberts PJ. Neurotransmitter deficits in Alzheimer's disease. In: DC Davies, ed. Alzheimer's disease: towards an understanding of the aetiology and pathogenesis. London: John Libbey, 1989: 9– 32. 3 Francis PT, Cross AJ, Bowen DM. Neurotransmitters and neuropeptides. In: RD Terry, R. Katzman, KL Bick, eds. Alzheimer disease. New York: Raven Press, 1994: 247– 61. 4 Horsburgh K., Saitoh T. Signal transduction in Alzheimer disease. In: RD Terry, R. Katzman, KL Bick, eds. Alzheimer disease. New York: Raven Press, 1994: 369– 86. 5 Tang WJ, Gilman AG. Adenylyl cyclases. Cell 1992: 70: 869– 72. 6 Iyengar R. Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J 1993: 7: 768– 75. 7 Cowburn RF, Vestling M., Fowler CJ, Ravid R., Winblad B., O'Neill C. Disrupted β1-adrenoceptor-G-protein coupling in the temporal cortex of patients with Alzheimer's disease. Neurosci Lett 1993: 155: 163– 66. 8 Wang HY, Friedman E. Receptor-mediated activation of G-proteins is reduced in postmortem brains from Alzheimer's disease patients. Neurosci Lett 1994: 173: 37– 39. 9 Cowburn RF, O'Neill C., Ravid R., Alafuzoff I., Winblad B., Fowler CJ. Adenylyl cyclase activity in postmortem human brain: evidence of altered G protein mediation in Alzheimer's disease. J Neurochem 1992: 58: 1409– 19. 10 O'Neill C., Wiehager B., Fowler CJ, Ravid R., Winblad B., Cowburn RF. Regionally selective alterations in G protein subunit levels in the Alzheimer's disease brain. Brain Res 1994: 636: 193– 201. 11 Ohm TG, Bohl J., Lemmer B. Reduced basal and stimulated (isoprenaline, Gpp[NH]p, forskolin) adenylate cyclase activity in Alzheimer's disease correlated with histopathological changes. Brain Res 1991: 540: 229– 36. 12 Schnecko A., Witte K., Bohl J., Ohm T., Lemmer B. Adenylyl cyclase activity in Alzheimer's disease brain: stimulatory and inhibitory signal transduction pathways are differentially affected. Brain Res 1994 644: 291– 96. 13 Dewar D., Horsburgh K., Graham DI, Brooks DN, McCulloch J. Selective alterations of high-affinity [3H]forskolin binding sites in Alzheimer's disease: a quantitative autoradiographic study. Brain Res 1990: 511: 241– 48. 14 Poat JA, Cripps HE, Iversen LL. Differences between high-affinity forskolin binding sites in dopamine-rich and other regions of rat brain. Proc Natl Acad Sci USA 1988: 85: 3216– 20. 15 Ross BM, McLaughlin M., Roberts M., Milligan G., McCulloch J., Knowler JT. Alterations in the activity of adenylyl cyclase and high affinity GTPase in Alzheimer's disease. Brain Res 1993: 622: 35– 42. 16 Cowburn RF, O'Neill C., Ravid R., Winlad B., Fowler CJ. Preservation of Gi-protein inhibited adenylyl cyclase activity in the brains of patients with Alzheimer's disease. Neurosci Lett 1992: 141: 16– 20. 17 McLaughlin M., Ross BM, Milligan G., McCulloch J., Knowler JT. Robustness of G proteins in Alzheimer's disease: an immunoblot study. J Neurochem 1991: 57: 9– 14. 18 Harrison PJ, Barton AJL, McDonald B., Pearson RCA. Alzheimer's disease: specific increases in a G-protein subunit (Gsα) mRNA in hippocampal and cortical neurons. Mol Brain Res 1991: 10: 71– 81. 19 Granneman JG, Bannon MJ. Splicing pattern of Gsα mRNA in human and rat brain. J Neurochem 1991: 57: 1019– 23. 20 O'Neill C., Fowler CJ, Wiehager B., Cowburn RF, Alafuzoff I., Winblad B. Coupling of human brain cerebral cortical α2-adrenoceptors to GTP-binding proteins in Alzheimer's disease. Brain Res 1991: 563: 39– 43. 21 O'Neill C., Cowburn RF, Wiehager B., Alafuzoff I., Winblad B., Fowler CJ. Preservation of 5-hydroxytryptamine1A receptor-G protein interactions in the cerebral cortex of patients with Alzheimer's disease. Neurosci Lett 1991: 133: 15– 19. 22 Ukas J., Brunner C., Nguyen L., Cotman CW. Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 1993: 52: 843– 54. 23 Bergström L., Garlind A., Nilsson L., Alafuzoff I., Fowler CJ, Winblad B., Cowburn RF. Regional distribution of somatostatin receptor binding and modulation of adenylyl cyclase in Alzheimer's disease brain. J Neurol Sci 1991: 105: 225– 33. 24 Smith CJ, Perry EK, Birdsall NJM. Modulatory effects of guanylylimidodiphosphate and Mg2+ on [3H]oxotremorine-M binding in normal and Alzheimer's disease parietal cortex: an index of muscarinic receptor G-protein coupling. Biochem Soc Trans 1989: 17: 202– 3. 25 Hernandez-Hernandez A., Adem A., Ravid R., Cowburn RF. Preservation of acetylcholine muscarinic M2 receptor G-protein interactions in the neocortex of patients with Alzheimer's disease. Neurosci Lett 1995: 186: 57– 60. 26 Slama A., Heidet V., Cervera P., Hirsch E., Javoy-Agid F., Epelbaum J. Preservation of somatostatin receptors coupled to the inhibition of adenylate cyclase in the cortex and hippocampus in senile dementia of the Alzheimer type. Dementia 1991: 2: 88– 94. 27 Jones DT, Reed RR. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory epithelium. J Biol Chem 1987: 262: 14241– 49. 28 McKenzie FR, Milligan G. δ-Opioid-receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide-binding protein Gi2. Biochem J 1990: 267: 391– 98. 29 Kato K., Kurobe N., Suzuki F. et al. Concentrations of several proteins characteristic of nervous tissue in cerebral cortex of patients with Alzheimer's disease. J Mol Neurosci 1991: 3: 95– 99. 30 Brown DA. G-proteins and potassium currents in neurons. Annu Rev Physiol 1990: 52: 215– 42. 31 Huang HM, Gibson GE. Altered β-adrenergic receptor-stimulated cAMP formation in cultured skin fibroblasts from Alzheimer donors. J Biol Chem 1993: 268: 14616– 21. 32 Sternweis PC, Smrcka AV. Regulation of phospholipase C by G proteins. Trends Biochem Sci 1992: 17: 502– 6. 33 Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988: 334: 661– 65. 34 Irvine RF. Inositol lipids in cell signalling. Curr Opin Cell Biol 1992: 4: 212– 19. 35 Smith CJ, Perry EK, Perry RH, Fairbairn AF, Birdsall NJM. Guanine nucleotide modulation of muscarinic cholinergic receptor binding in postmortem human brain– a preliminary study in Alzheimer's disease. Neurosci Lett 1987: 82: 227– 32. 36 Flynn DD, Weinstein DA, Mash DC. Loss of high-affinity agonist binding to M1 muscarinic receptors in Alzheimer's disease: implications for the failure of cholinergic replacement therapies. Ann Neurol 1991: 29: 256– 62. 37 Warpman U., Alafuzoff I., Nordberg A. Coupling of muscarinic receptors to GTP proteins in postmortem human brain: alterations in Alzheimer's disease. Neurosci Lett 1993: 150: 39– 43. 38 Pearce BD, Potter LT. Coupling of m1 muscarinic receptors to G-protein in Alzheimer's disease. Alzheimer Dis Assoc Disord 1991: 5: 163– 72. 39 Ogawa N., Mizukawa K., Asanuma M., Kanazawa I. Abnormalities in muscarinic cholinergic receptors and their G-protein coupling systems in the cerebral frontal cortex in Alzheimer's disease. Arch Gerontol Geriatr 1993: 17: 77– 89. 40 Ferrari-diLeo G., Flynn DD. Diminished muscarinic receptor-stimulated [3H]-PIP2 hydrolysis in Alzheimer's disease. Life Sci 1993: 53: 439– 44. 41 Stokes CE, Hawthorne JN. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. J Neurochem 1987: 48: 1018– 21. 42 Jolles J., Bothmer J., Markerink M., Ravid R. Phosphatidylinositol kinase is reduced in Alzheimer's disease. J Neurochem 1992: 58: 2326– 29. 43 Bothmer J., Markerink M., Jolles J. Evidence for a selective decrease in type 1 phosphatidylinositol kinase activity in brains of patients with Alzheimer's disease. Dementia 1994: 5: 6– 11. 44 Young LT, Kish SJ, Li PP, Warsh JJ. Decreased brain [3H]inositol 1,4,5-trisphosphate binding in Alzheimer's disease. Neurosci Lett 1988: 94: 198– 202. 45 Garlind A., Cowburn RF, Forsell L., Winblad B., Fowler CJ. Diminished inositol(1,4,5)trisphosphate (IP3) but not inositol(1,3,4,5)tetrakisphosphate (IP4) binding in Alzheimer's disease brain. Brain Res 1995: 681: 160– 66. 46 Magnusson A., Haug LS, Walaas SI, Ostvold AC. Calcium-induced degradation of the [1,4,5]-trisphosphate receptor/Ca2+ channel. FEBS Lett 1993: 323: 229– 32. 47 Saito K-I, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA 1993: 90: 2628– 32. 48 Cole G., Dobkins KR, Hansen LA, Terry RD, Saitoh T. Decreased levels of protein kinase C in Alzheimer brain. Brain Res 1988: 452: 165– 74. 49 Masliah E., Cole GM, Shimohama S. et al. Differential involvement of protein kinase C isozymes in Alzheimer's disease. J Neurosci 1990: 10: 2113– 24. 50 Masliah E., Cole GM, Hansen LA et al. Protein kinase C alteration is an early biochemical marker in Alzheimer's disease. J Neurosci 1991: 11: 2759– 67. 51 Parent A., Brooks W., Quirion R. Brain [3H]phorbol ester binding sites in Alzheimer's and Parkinson's disease: an autoradiographic study. In: B. Corain, K. Iqbal, M. Nicolini, B. Winblad, H. Wisniewski, P. Zatta, eds. Alzheimer's disease: advances in clinical and basic research. Chichester: John Wiley and Sons Ltd, 1993: 341– 48. 52 Horsburgh K., Dewar DD, Graham DI, McCulloch J. Autoradiographic imaging of [3H]phorbol 12,13-dibutyrate binding to protein kinase C in Alzheimer's disease. J Neurochem 1991: 56: 1121– 29. 53 Van Huynh T., Cole G., Katzman R., Huang KP, Saitoh T. Reduced protein kinase C immunoreactivity and altered protein phosphorylation in Alzheimer's disease fibroblasts. Arch Neurol 1989: 46: 1195– 99. 54 Bruel A., Cherqui G., Columelli S. et al. Reduced protein kinase C activity in sporadic Alzheimer's disease fibroblasts. Neurosci Lett 1991: 133: 89– 92. 55 Govoni S., Bergamaschi S., Racchi M. et al. Cytosol protein kinase C downregulation in fibroblasts from Alzheimer's disease patients. Neurology 1993: 43: 2581– 86. 56 Winblad B., Messamore E., O'Neill C., Cowburn RF. Biochemical pathology and treatment strategies in Alzheimer's disease: emphasis on the cholinergic system. Acta Neurol Scand 1993: 149 (Suppl): 4– 6. 57 Joachim CL, Selkoe DJ. The seminal role of β-amyloid in the pathogenesis of Alzheimer's disease. Alz Dis Assoc Disord 1992: 6: 7– 34. 58 Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992: 256: 184– 85. 59 Gillespie SL, Golde TE, Younkin SG. Secretory processing of the Alzheimer amyloid β/A4 protein precursor is increased by protein phosphorylation. Biochem Biophys Res Commun 1992: 187: 1285– 90. 60 Hung AY, Haas C., Nitsch R. et al. Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J Biol Chem 1993: 268: 22959– 62. 61 Gabuzda D., Busciglio J., Yankner BA. Inhibition of β-amyloid production by activation of protein kinase C. J Neurochem 1993: 61: 2326– 29. 62 Buxbaum JD, Koo EH, Greengard P. Protein phosphorylation inhibits production of Alzheimer amyloid β/A4 peptide. Proc Natl Acad Sci USA 1993: 90: 9195– 98. 63 Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992: 258: 304– 7. 64 Buxbaum JD, Oishi M., Chen HI et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor. Proc Natl Acad Sci USA 1992: 89: 10075– 78. 65 Nitsch RM, Farber SA, Growdon JH, Wurtman RJ. Release of amyloid β-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc Natl Acad Sci USA 1993: 90: 5191– 93. 66 Nitsch RM, Growdon JH. Role of neurotransmission in the regulation of amyloid β-protein precursor processing. Biochem Pharmacol 1994: 47: 1275– 84. 67 Efthimiopoulos S., Felsenstein KM, Sambamurti K., Robakis NK, Refolo LM. Study of the phorbol ester effect on Alzheimer amyloid precursor processing: sequence requirements and involvement of a cholera toxin sensitive protein. J Neurosci Res 1994: 38: 81– 90. Citing Literature Volume94, IssueS165April 1996Pages 25-32 ReferencesRelatedInformation

Referência(s)