Artigo Revisado por pares

A survey of partial differential equations methods in weak KAM theory

2004; Wiley; Volume: 57; Issue: 4 Linguagem: Inglês

10.1002/cpa.20009

ISSN

1097-0312

Autores

Lawrence C. Evans,

Tópico(s)

Mathematical Dynamics and Fractals

Resumo

Communications on Pure and Applied MathematicsVolume 57, Issue 4 p. 445-480 A survey of partial differential equations methods in weak KAM theory Lawrence C. Evans, Lawrence C. Evans [email protected] University of California, Berkeley, Department of Mathematics, Berkeley, CA 94720-3840Search for more papers by this author Lawrence C. Evans, Lawrence C. Evans [email protected] University of California, Berkeley, Department of Mathematics, Berkeley, CA 94720-3840Search for more papers by this author First published: 21 January 2004 https://doi.org/10.1002/cpa.20009Citations: 28AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Bibliography 1 Alvarez, O.; Bardi, M. A general convergence result of singular perturbations of fully nonlinear degenerate parabolic PDEs. To appear. Arch Ration Mech Anal 170 (2003), 17– 61. 2 Anantharaman, N. Gibbs measures on path space and viscous approximation to action-minimizing measures. Trans Amer Math Soc (2003), to appear. Available online at http://www.umpa.ens-lyon.fr/UMPA/Prepublications/0303/ 3 Anderson, E. J.; Nash, P. Linear programming in infinite-dimensional spaces. Theory and applications. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Chichester, 1987. 4 Arnol′d, V. I.; Kozlov, V. V.; Neĭshtadt, A. I. Mathematical aspects of classical and celestial mechanics. Dynamical systems, vii– xiv, 1–291. Encyclopaedia of Mathematical Sciences, 3. Springer, Berlin, 1988. 1993 5 Aubry, S. The twist map, the extended Frenkel-Kontorova model and the devil's staircase. Order in chaos (Los Alamos, N.M., 1982). Phys D 7 (1983), no. 1–3, 240– 258. 6 Barles, G.; Souganidis, P. E. Some counterexamples on the asymptotic behavior of the solutions of Hamilton-Jacobi equations. C R Acad Sci Paris Sér I Math 330 (2000), no. 11, 963– 968. 7 Barron, E. N. Viscosity solutions and analysis in L∞. Nonlinear analysis, differential equations and control (Montreal, QC, 1998), 1– 60. NATO Science Series C: Mathematical and Physical Sciences, 528. Kluwer, Dordrecht, 1999. 8 Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic analysis for periodic structures. Studies in Mathematics and Its Applications, 5. North-Holland, Amsterdam—New York, 1978. 9 Bernard, P. The action spectrum near positive definite invariant tori. In preparation. 10 Bertsimas, D.; Tsitsiklis, J. N. Introduction to linear optimization. Athena Scientific, Belmont, Mass., 1997. 11 Capdeboscq, Y. Homogenization of a neutronic critical diffusion problem with drift. Proc Roy Soc Edinburgh Sect A 132 (2002), no. 3, 567– 594. 12 Concordel, M. C. Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalues and variational formula. Indiana Univ Math J 45 (1996), no. 4, 1095– 1117. 13 Concordel, M. C. Periodic homogenisation of Hamilton-Jacobi equations. II. Eikonal equations. Proc Roy Soc Edinburgh Sect A 127 (1997), no. 4, 665– 689. 14 Contreras, G.; Iturriaga, R. Global minimizers of autonomous Lagrangians. 22o Colóquio Brasileiro de Matemática. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1999. 15 Deift, P. Integrable Hamiltonian systems. Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), 103– 138. Lectures in Applied Mathematics, 31. American Mathematical Society, Providence, R.I., 1996. 16 E, W. Aubry-Mather theory and periodic solutions of the forced Burgers equation. Comm Pure Appl Math 52 (1999), no. 7, 811– 828. 17 Evans, L. C. Periodic homogenisation of certain fully nonlinear partial differential equations. Proc Roy Soc Edinburgh Sect A 120 (1992), no. 3–4, 245– 265. 18 Evans, L. C. Effective Hamiltonians and quantum states. Séminaire: Équations aux Dérivées Partielles, 2000–2001, Exp. No. XXII. Séminaire: Équations aux Dérivées Partielles, École Polytechnique, Palaiseau, 2001. 19 Evans, L. C. Some new PDE methods for weak KAM theory. Calc Var Partial Differential Equations 17 (2003), no. 2, 159– 177. 20 Evans, L. C. Towards a quantum analog of weak KAM theory. Comm Math Phys, to appear. 21 Evans, L. C.; Gomes, D. Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch Ration Mech Anal 157 (2001), no. 1, 1– 33. 22 Evans, L. C.; Gomes, D. Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch Ration Mech Anal 161 (2002), no. 4, 271– 305. 23 Evans, L. C.; Gomes, D. Linear programming interpretations of Mather's variational principle. A tribute to J. L. Lions. ESAIM Control Optim Calc Var 8 (2002), 693– 702. 24 Fathi, A. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C R Acad Sci Paris Sér I Math 324 (1997), no. 9, 1043– 1046. 25 Fathi, A. Solutions KAM faibles conjuguées et barrières de Peierls. C R Acad Sci Paris Sér I Math 325 (1997), no. 6, 649– 652. 26 Fathi, A. Orbites hétéroclines et ensemble de Peierls. C R Acad Sci Paris Sér I Math 326 (1998), no. 10, 1213– 1216. 27 Fathi, A. Sur la convergence du semi-groupe de Lax-Oleinik. C R Acad Sci Paris Sér I Math 327 (1998), no. 3, 267– 270. 28 Fathi, A. Weak KAM theory in Lagrangian dynamics. Preliminary version. Lecture notes. Ëcole Normale Supérieure, Lyon, 2003. 29 Fathi, A.; Maderna, E. Weak KAM theorem on noncompact manifolds. In preparation. 30 Fathi, A.; Mather, J. N. Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case. Bull Soc Math France 128 (2000), no. 3, 473– 483. 31 Fathi, A.; Siconolfi, A. Existence of C1 critical subsolutions of the Hamilton-Jacobi equation Invent Math, to appear. 32 Fathi, A.; Siconolfi, A. PDE aspects of Aubry-Mather theory for continuous convex Hamiltonians. In preparation. 33 Goldstein, H. Classical mechanics. 2nd ed.. Addison-Wesley Series in Physics. Addison-Wesley, Reading, Mass., 1980. 34 Gomes, D. Hamilton-Jacobi equations, viscosity solutions and asymptotics of Hamiltonian systems. Ph.D. thesis, University of California, Berkeley, 2000. 35 Gomes, D. A. Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems. Calc Var Partial Differential Equations 14 (2002), no. 3, 345– 357. 36 Gomes, D. A. A stochastic analogue of Aubry-Mather theory. Nonlinearity 15 (2002), no. 3, 581– 603. 37 Gomes, D. A. Regularity theory for Hamilton-Jacobi equations. J Differential Equations 187 (2003), no. 2, 359– 374. 38 Gomes, D. A. Perturbation theory for Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J Math Anal, to appear. 39 Gomes, D. A.; Oberman, A. Computing the effective Hamiltonian: a variational approach to homogenization. In preparation. 40 Gosse, L.; Markowich, P. Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice. I: Homogeneous problems, vanishing exterior potentials. In preparation. 41 Guerra, F.; Morato, L. M. Quantization of dynamical systems and stochastic control theory. Phys Rev D (3) 27 (1983), no. 8, 1774– 1786. 42 Jauslin, H. R.; Kreiss, H. O.; Moser, J. On the forced Burgers equation with periodic boundary conditions. Differential equations: La Pietra 1996 (Florence), 133– 153. Proc Sympos Pure Math, 65. American Mathematical Society, Providence, R.I., 1999. 43 Khouider, B.; Bourlioux, A. Computing the effective Hamiltonian in the Majda-Souganidis model of turbulent premixed flames. SIAM J Numer Anal 40 (2002), no. 4, 1330– 1353. 44 Lax, P. Linear algebra. Pure and Applied Mathematics. Wiley, New York, 1997. 45 Lions, P.-L.; Papanicolaou, G.; Varadhan, S. R. S. Homogenization of Hamilton-Jacobi equations. Unpublished, circa 1988. 46 Lions, P.-L.; Souganidis, P. E. Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm Pure Appl Math 56 (2003), no. 10, 1501– 1524. 47 Majda, A. J.; Souganidis, P. E. Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales. Nonlinearity 7 (1994), no. 1, 1– 30. 48 Mañé, R. Global variational methods in conservative dynamics. 18 Coloquio Bras de Mat Instituto de Matem´tica Pura e Aplicada, Rio de Janeiro, 1991. 49 Mañé, R. On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992), no. 3, 623– 638. 50 Mañé, R. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996), no. 2, 273– 310. 51 Mather, J. N. Minimal measures. Comment Math Helv 64 (1989), no. 3, 375– 394. 52 Mather, J. N. Differentiability of the minimal average action as a function of the rotation number. Bol Soc Brasil Mat (NS) 21 (1990), no. 1, 59– 70. 53 Mather, J. N. Action minimizing invariant measures for positive definite Lagrangian systems. Math Z 207 (1991), no. 2, 169– 207. 54 Mather, J. N. Variational construction of connecting orbits. Ann Inst Fourier (Grenoble) 43 (1993), no. 5, 1349– 1386. 55 Mather, J. N.; Forni, G. Action minimizing orbits in Hamiltonian systems. Transition to chaos in classical and quantum mechanics (Montecatini Terme, 1991), 92– 186. Lecture Notes in Mathematics, 1589. Springer, Berlin, 1994. 56 Nelson, E. Quantum fluctuations. Princeton Series in Physics. Princeton University Press, Princeton, N.J., 1985. 57 Oberman, A. Some numerical experiments with homogenization. Preprint, 2003. 58 Qian, K. Two approximations for effective Hamiltonians arising from homogenization of Hamilton-Jacobi equation. Preprint, 2003. 59 Yu, Y. Error estimates for a quantization of a Mather set. Preprint, 2002. Citing Literature Volume57, Issue4April 2004Pages 445-480 ReferencesRelatedInformation

Referência(s)