Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: A comparative study
2014; Imperial College Press; Volume: 13; Issue: 01 Linguagem: Inglês
10.1142/s021963521450006x
ISSN1757-448X
AutoresRajamanickam Yuvaraj, M. Murugappan, Norlinah Mohamed Ibrahim, Mohammad Iqbal Omar, Kenneth Sundaraj, Khairiyah Mohamad, Ramaswamy Palaniappan, M. Satiyan,
Tópico(s)Parkinson's Disease Mechanisms and Treatments
ResumoJournal of Integrative NeuroscienceVol. 13, No. 01, pp. 89-120 (2014) ArticlesNo AccessEmotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: A comparative studyR. Yuvaraj, M. Murugappan, Norlinah Mohamed Ibrahim, Mohd Iqbal Omar, Kenneth Sundaraj, Khairiyah Mohamad, R. Palaniappan, and M. SatiyanR. YuvarajSchool of Mechatronic Engineering, University Malaysia Perlis (UniMAP), Malaysia, M. MurugappanSchool of Mechatronic Engineering, University Malaysia Perlis (UniMAP), Malaysia, Norlinah Mohamed IbrahimNeurology Unit, Department of Medicine, UKM Medical Center, Kuala Lumpur, Malaysia, Mohd Iqbal OmarSchool of Mechatronic Engineering, University Malaysia Perlis (UniMAP), Malaysia, Kenneth SundarajSchool of Mechatronic Engineering, University Malaysia Perlis (UniMAP), Malaysia, Khairiyah MohamadNeurology Unit, Department of Medicine, UKM Medical Center, Kuala Lumpur, Malaysia, R. PalaniappanFaculty of Science and Engineering, University of Wolverhampton, United Kingdom, and M. SatiyanSchool of Mechatronic Engineering, University Malaysia Perlis (UniMAP), Malaysiahttps://doi.org/10.1142/S021963521450006XCited by:30 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractDeficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13–30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.Keywords:EEGemotionParkinson's diseasebispectrumpower spectrumpattern classification References R. Adolphset al., J. Neurosci. 16, 7678 (1996). Crossref, Medline, ISI, Google ScholarR. Adolphs, R. Schul and D. Tranel, Neuropsychology. 12, 253 (1998), DOI: 10.1037/0894-4105.12.2.253. Crossref, Medline, ISI, Google ScholarL. I. Aftanaset al., Neurosci. Behav. Physiol. 36(2), 119 (2006), DOI: 10.1007/s11055-005-0170-6. Crossref, Medline, Google ScholarL. I. Aftanaset al., Neurosci. Behav. Physiol. 34, 859 (2004), DOI: 10.1023/B:NEAB.0000038139.39812.eb. Crossref, Medline, Google ScholarA. Ariatti, F. Benuzzi and P. Nichelli, Neurol. Sci. 29, 219 (2008), DOI: 10.1007/s10072-008-0971-9. Crossref, Medline, ISI, Google ScholarJ. N. Bailensonet al., Int. J. Hum. Comput. Stud. 66, 303 (2008), DOI: 10.1016/j.ijhcs.2007.10.011. Crossref, ISI, Google ScholarM. Balconi and C. Lucchiari, Int. J. Psychophysiol. 67, 41 (2008), DOI: 10.1016/j.ijpsycho.2007.10.002. Crossref, Medline, ISI, Google ScholarT. Balli and R. Palaniappan, Physiol. Meas. 31, 903 (2010), DOI: 10.1088/0967-3334/31/7/003. Crossref, Medline, ISI, Google ScholarT. Baumgartner, M. Esslen and L. Jancke, Int. J. Psychophysiol. 60, 34 (2006), DOI: 10.1016/j.ijpsycho.2005.04.007. Crossref, Medline, ISI, Google ScholarA. T. Becket al., Arch. Gen. Psychiatry 4, 561 (1961), DOI: 10.1001/archpsyc.1961.01710120031004. Crossref, Medline, ISI, Google ScholarR. J. R. Blair, Philos. Trans. R Soc. Lond, B Biol. Sci. 358, 561 (2003), DOI: 10.1098/rstb.2002.1220. Crossref, Medline, ISI, Google ScholarB. Blankertzet al., IEEE Trans. Biomed. Eng. 51, 1044 (2004), DOI: 10.1109/TBME.2004.826692. Crossref, Medline, ISI, Google ScholarT. P. Bouchardet al., Neurobiol. Aging 29, 1027 (2008), DOI: 10.1016/j.neurobiolaging.2007.02.002. Crossref, Medline, ISI, Google ScholarD. Bowerset al., Brain 129, 3356 (2006), DOI: 10.1093/brain/awl301. Crossref, Medline, ISI, Google Scholar Bradley, M.M. & Lang, P.J. (2007) International affective digitized sounds (2nd Edition; IADS-2): Affective ratings of sounds and instruction manual. Technical Report B-3 University of Florida, Gainesville, FL . Google ScholarL. Brown, B. Grundlehner and J. Penders, Towards wireless emotional valence detection from EEG, Conf. Proc. IEEE Eng. Med. Biol. Soc. (2011) pp. 2188–2191. Google ScholarC. J. C. Burgees, Data Min. Knowl. Disc. 2, 1 (1998). ISI, Google Scholar N. Christianini and J. Taylor , Support Vector Machines and Other Kernel-Based Learning Methods ( Cambridge University Press , Cambridge , 2000 ) . Crossref, Google ScholarK. C. Chuaet al., J. Med. Syst. 35, 1563 (2011), DOI: 10.1007/s10916-010-9433-z. Crossref, Medline, ISI, Google ScholarU. S. Clark, S. Neargarder and A. Cronin-Golomb, Neuropsychologia 46, 2300 (2008), DOI: 10.1016/j.neuropsychologia.2008.03.014. Crossref, Medline, ISI, Google Scholar I. Cohen , A. Garg and T. S. Huang , Emotion recognition from facial expressions using multilevel HMM , Conf. Proc. in Neural Information Processing Systems ( 2000 ) . Google ScholarS. Cohen and D. Janicki-Deverts, Perspect. Psychol. Sci. 4, 375 (2009), DOI: 10.1111/j.1745-6924.2009.01141.x. Crossref, Medline, ISI, Google Scholar R. R. Cornelius , The Science of Emotion ( Prentice Hall , Upper Saddle River, NJ , 1996 ) . Google ScholarC. Dara, L. Monetta and M. D. Pell, Brain Res. 1188, 100 (2008), DOI: 10.1016/j.brainres.2007.10.034. Crossref, Medline, ISI, Google ScholarR. J. Davidson, Biol. Psychol. 67, 219 (2004), DOI: 10.1016/j.biopsycho.2004.03.008. Crossref, Medline, ISI, Google ScholarR. J. Davidsonet al., J. Pers. Soc. Psychol. 58, 330 (1990), DOI: 10.1037/0022-3514.58.2.330. Crossref, Medline, ISI, Google ScholarK. Dujardinet al., Neuropsychologia 42, 239 (2004), DOI: 10.1016/S0028-3932(03)00154-4. Crossref, Medline, ISI, Google ScholarP. Ekman and W. V. Friesen, J. Pers. Soc. Psychol. 53, 712 (1987), DOI: 10.1037/0022-3514.53.4.712. Crossref, Medline, ISI, Google ScholarS. Fahn, R. L. Elton and M. Committee, Recent Developments in Parkinson's Disease, eds. C. D. Marsdenet al. (Macmillan Health Care Information, Florham Park, 1987) pp. 153–163. Google ScholarM. F. Folstein, S. E. Folstein and P. R. Mchugh, Psychol. Res. 12, 189 (1975), DOI: 10.1016/0022-3956(75)90026-6. Crossref, ISI, Google ScholarM. F. Friedman, J. Clin. Exp. Neuropsychol. 25, 702 (2003), DOI: 10.1076/jcen.25.5.702.14578. Crossref, Medline, ISI, Google ScholarJ. Gao, J. Hu and W. Tung, Plos One 6, 1 (2011), DOI: 10.1371/annotation/322ccfc2-9407-4c6d-b08f-0ba8ffe8918c. Google ScholarA. J. Gowet al., J. Ind. Differ. 28, 103 (2007), DOI: 10.1027/1614-0001.28.3.103. Crossref, Google ScholarH. M. Gray and L. Tickle-Degnen, Neuropsychology 24, 176 (2010), DOI: 10.1037/a0018104. Crossref, Medline, ISI, Google ScholarJ. J. Gross and R. W. Levenson, Cogn. Emotion 9, 87 (1995), DOI: 10.1080/02699939508408966. Crossref, ISI, Google ScholarA. Haaget al., Affective Dialogue Systems, eds. E. Andreet al. (Springer, Heidelberg, 2004) pp. 36–48. Crossref, Google ScholarS. K. Hadjidimitriou and L. J. Hadjileontiadis, IEEE Trans. Biomed. Eng. 59, 3498 (2012), DOI: 10.1109/TBME.2012.2217495. Crossref, Medline, ISI, Google Scholar Hamdi, H., Richard, P., Suteau, A. & Allain, P. (2012) Emotion assessment for affective computing based on physiological responses. In: Conf. Proc. Fuzzy Systems (FUZZ-IEEE), IEEE International Conference on, World Congress Computational Intelligence (WCCI), pp. 1–8, 10–15 June 2012 . Google Scholar J. Han and M. Kamber , Data Mining: Concepts and Techniques , 2nd edn. ( Morgan Kaufmann , 2006 ) . Google ScholarM. M. Hoehn and M. D. Yahr, Neurology 17, 427 (1967), DOI: 10.1212/WNL.17.5.427. Crossref, Medline, ISI, Google ScholarS. A. Hosseini, Int. J. Image, Graph. Signal Process. 1, 21 (2012). ISI, Google Scholar Hsu, C.W., Chang, C.C. & Lin, C.J. (2003) A practical guide to support vector classification. Technical Report, Department of Computer Science, National Taiwan University . Google ScholarL. Huanget al., Med. Eng. Phys. 29, 1 (2007), DOI: 10.1016/j.medengphy.2005.12.005. Crossref, Medline, ISI, Google ScholarS. Jerrittaet al., Biomed. Eng. Online 12, 44 (2013). Medline, ISI, Google ScholarY. Kanet al., J. Neurol. Neurosurg. Psychiatry 75, 1667 (2004), DOI: 10.1136/jnnp.2004.036079. Crossref, Medline, ISI, Google ScholarN. Kannathalet al., Comput. Meth. Progr. Biomed. 80, 17 (2005), DOI: 10.1016/j.cmpb.2005.06.005. Crossref, Medline, ISI, Google ScholarN. Kannathalet al., Biomed. Eng. Online 3, 1 (2004). Medline, ISI, Google ScholarL. Kessous, G. Castellano and G. Caridakis, J. Multimodal User Interf. 3, 33 (2010), DOI: 10.1007/s12193-009-0025-5. Crossref, ISI, Google Scholar Kim, J. (2007) Bimodal emotion recognition using speech and physiological changes. Technical Report . Google ScholarJ. Kim and E. Andre, IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067 (2008). Crossref, Medline, ISI, Google ScholarK. H. Kim, S. W. Bang and S. R. Kim, Med. Biol. Eng. Comput. 42, 419 (2004), DOI: 10.1007/BF02344719. Crossref, Medline, ISI, Google ScholarH. Koberet al., NeuroImage 42, 998 (2008), DOI: 10.1016/j.neuroimage.2008.03.059. Crossref, Medline, ISI, Google ScholarP. J. Lang, Am. Psychol. 50(5), 372 (1995), DOI: 10.1037/0003-066X.50.5.372. Crossref, Medline, ISI, Google ScholarP. J. Langet al., Psychophysiology 30, 261 (1993), DOI: 10.1111/j.1469-8986.1993.tb03352.x. Crossref, Medline, ISI, Google ScholarA. D. Lawrence, I. K. Goerendt and D. J. Brooks, Neuropsychologia 45, 65 (2007), DOI: 10.1016/j.neuropsychologia.2006.04.016. Crossref, Medline, ISI, Google ScholarM. Li and B. L. Lu, Emotion classification based on gamma band EEG, Conf. Proc IEEE Eng. Med. Biol. Soc. IEEE Engineering in Medicine and Biology Society (IEMBS) (2009) pp. 1323–1326. Google ScholarC. F. Lima, C. Garrett and S. L. Castro, J. Clin. Exp. Neuropsychol. 35, 373 (2013), DOI: 10.1080/13803395.2013.776518. Crossref, Medline, ISI, Google ScholarY. P. Linet al., IEEE Trans. Biomed. Eng. 57, 1798 (2010). Medline, ISI, Google ScholarP. Madeley, A. Ellis and R. Mindham, Behav. Neurol. 8, 115 (1995), DOI: 10.1155/1995/750425. Crossref, Medline, ISI, Google ScholarP. Melillo, M. Bracale and L. Pecchia, Biomed. Eng. Online 10, 1 (2011), DOI: 10.1186/1475-925X-10-96. Medline, ISI, Google ScholarJ. Mikelset al., Behav. Res. Methods 37, 630 (2005), DOI: 10.3758/BF03192732. Google ScholarK. M. Milleret al., Neuropsychologia 47, 1917 (2009), DOI: 10.1016/j.neuropsychologia.2009.03.002. Crossref, Medline, ISI, Google ScholarA. Moritaet al., J. Clin. Neuropsychol. 26, 426 (2009). Google ScholarK. R. Mulleret al., IEEE Trans. Neural Netw. 12, 181 (2001), DOI: 10.1109/72.914517. Crossref, Medline, ISI, Google ScholarM. Murugappan, R. Nagarajan and S. Yaacob, J. Med. Biol. Eng. 31, 45 (2010), DOI: 10.5405/jmbe.710. Crossref, ISI, Google ScholarM. Murugappanet al., IJMEI 1, 342 (2009), DOI: 10.1504/IJMEI.2009.022645. Crossref, ISI, Google ScholarP. S. Myleset al., Lancet 363, 1757 (2004), DOI: 10.1016/S0140-6736(04)16300-9. Crossref, Medline, ISI, Google ScholarM. Y. Neufeld, R. Inzelberg and A. D. Korczyn, Acta Neurol. Scand. 78, 1 (1988), DOI: 10.1111/j.1600-0404.1988.tb03609.x. Crossref, Medline, ISI, Google Scholar C. L. Nikias and A. Petropulu , Higher-Order Apectral Analysis: A Nonlinear Signal Processing Framework ( Prentice Hall , Englewood Cliffs, NJ , 1993 ) . Google ScholarR. C. Oldfield, Neuropsychologia 9, 97 (1971), DOI: 10.1016/0028-3932(71)90067-4. Crossref, Medline, ISI, Google ScholarV. Orgeta, Aging Ment. Health. 13, 818 (2009), DOI: 10.1080/13607860902989661. Crossref, Medline, ISI, Google ScholarS. Paulmann and M. D. Pell, J. Clin. Exp. Neuropsychol. 32, 822 (2010), DOI: 10.1080/13803391003596371. Crossref, Medline, ISI, Google ScholarM. D. Pell and C. L. Leonard, Cogn. Affect. Behav. Neurosci. 3, 275 (2003), DOI: 10.3758/CABN.3.4.275. Crossref, Medline, ISI, Google ScholarM. D. Pell and C. L. Leonard, Cogn. Brain Res. 23, 327 (2005), DOI: 10.1016/j.cogbrainres.2004.11.004. Crossref, Medline, Google ScholarJ. Péronet al., Mov. Disord 27, 186 (2012). Crossref, Medline, ISI, Google ScholarP. C. Petrantonakis and L. J. Hadjileontiadis, IEEE Trans. Affect. Comput. 1, 81 (2010), DOI: 10.1109/T-AFFC.2010.7. Crossref, ISI, Google ScholarP. C. Petrantonakis and L. J. Hadjileontiadis, IEEE Trans. Inf. Technol. Biomed. 15, 737 (2011), DOI: 10.1109/TITB.2011.2157933. Crossref, Medline, ISI, Google Scholar P. Rani and N. Sarkar , Mobile Robots: Towards New Applications , ed. L. Aleksandar ( I-Tech Education and Publishing , 2006 ) . Google ScholarJ. Redondoet al., Behav. Res. Methods 40, 784 (2008), DOI: 10.3758/BRM.40.3.784. Crossref, Medline, ISI, Google ScholarT. Ruffmanet al., Neurosci Biobehav. Rev. 32, 863 (2008), DOI: 10.1016/j.neubiorev.2008.01.001. Crossref, Medline, ISI, Google ScholarD. Sammleret al., Psychophysiology 44, 293 (2007), DOI: 10.1111/j.1469-8986.2007.00497.x. Crossref, Medline, ISI, Google Scholar Schlogl, A. (2003) Outcome of the BCI-competition 2003 on the Graz data set, Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.5555&rep=rep1&type=pdf . Google ScholarC. Schröderet al., Mov. Disord. 21, 1774 (2006). Crossref, Medline, ISI, Google ScholarM. Shenet al., IEE Proc. Sci. Meas Technol. 147(6), 374 (2000), DOI: 10.1049/ip-smt:20000847. Crossref, Google ScholarR. Sprengelmeyeret al., Neuropsychologia 41, 1047 (2003), DOI: 10.1016/S0028-3932(02)00295-6. Crossref, Medline, ISI, Google ScholarA. Suzukiet al., Brain 129, 707 (2006), DOI: 10.1093/brain/awl011. Crossref, Medline, ISI, Google ScholarA. Tessitoreet al., J. Neurosci. 22, 9099 (2002). Crossref, Medline, ISI, Google ScholarY. Wang and L. Guan, IEEE Trans. Multimedia 10, 659 (2008), DOI: 10.1109/TMM.2008.921734. Crossref, ISI, Google ScholarM. J. Wieseret al., Cortex 48, 1207 (2012), DOI: 10.1016/j.cortex.2011.06.006. Crossref, Medline, ISI, Google ScholarC. L. Yeager, W. W. Alberts and L. D. Denature, Neurology 16, 904 (1966), DOI: 10.1212/WNL.16.9.904. Crossref, ISI, Google ScholarJ. T. Yipet al., Mov. Disord. 18, 1115 (2003), DOI: 10.1002/mds.10497. Crossref, Medline, ISI, Google ScholarR. Yuvarajet al., Int. J. Neurosci. 22, 1 (2013). Medline, ISI, Google ScholarS. M. Zhou, J. Q. Gan and F. Sepulveda, Inf. Sci. 178, 1629 (2008), DOI: 10.1016/j.ins.2007.11.012. Crossref, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 30A decision support system for automated diagnosis of Parkinson's disease from EEG using FAWT and entropy featuresParikha Chawla, Shashi B. Rana, Hardeep Kaur, Kuldeep Singh and Rajamanickam Yuvaraj et al.1 Jan 2023 | Biomedical Signal Processing and Control, Vol. 79Association between resting-state EEG oscillation and psychometric properties in perimenopausal womenRen-Jen Hwang, Hsiu-Chin Hsu, Lee-Fen Ni, Hsin-Ju Chen and Yu-Sheun Lee et al.10 May 2022 | BMC Women's Health, Vol. 22, No. 1An Approach to Emotion Recognition Using Brain Rhythm Sequencing and Asymmetric FeaturesJia Wen Li, Rong Jun Chen, Shovan Barma, Fei Chen and Sio Hang Pun et al.26 August 2022 | Cognitive Computation, Vol. 14, No. 6Machine learning classification of maladaptive rumination and cognitive distraction in terms of frequency specific complexitySerap Aydın and Barış Akın1 Aug 2022 | Biomedical Signal Processing and Control, Vol. 77Survey of Machine Learning Techniques in the Analysis of EEG Signals for Parkinson's Disease: A Systematic ReviewAna M. Maitin, Juan Pablo Romero Muñoz and Álvaro José García-Tejedor9 July 2022 | Applied Sciences, Vol. 12, No. 14Investigation of the Brain Activation Pattern of Stroke Patients and Healthy Individuals During Happiness and SadnessWen Yean Choong, Wan Khairunizam, M. Murugappan, Wan Azani Mustafa and Abdul Hamid Adom et al.18 June 2022Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain statesAlexander E. Hramov, Vladimir A. Maksimenko and Alexander N. Pisarchik1 Jun 2021 | Physics Reports, Vol. 918Reversed Correlation-Based Pairwised EEG Channel Selection in Emotional State RecognitionAleksandra Dura, Agnieszka Wosiak, Bartłomiej Stasiak, Adam Wojciechowski and Jan Rogowski9 June 2021Improve the Application of EMD and SVM in the Recognition of Emotional EEG SignalsZhiyi Li24 June 2021Recognition of positive and negative valence states in children with autism spectrum disorder (ASD) using discrete wavelet transform (DWT) analysis of electrocardiogram signals (ECG)Anandhi Bagirathan, Jerritta Selvaraj, Anusuya Gurusamy and Himangshu Das2 May 2020 | Journal of Ambient Intelligence and Humanized Computing, Vol. 12, No. 1Hurst Exponent Based Brain Behavior Analysis of Stroke Patients Using EEG SignalsWen Yean Choong, Wan Khairunizam, Murugappan Murugappan, Mohammad Iqbal Omar and Siao Zheng Bong et al.8 July 2020Recurrence Quantification Analysis based Emotion Detection in Parkinson's disease using EEG SignalsM Murugappan, Waleed B Alshuaib, Ali Bourisly, Sai Sruthi and Ranjana R28 Sep 2020Video‐triggered EEG‐emotion public databases and current methods: A surveyWanrou Hu, Gan Huang, Linling Li, Li Zhang and Zhiguo Zhang et al.4 February 2021 | Brain Science Advances, Vol. 6, No. 3Deep Learning Classification of Neuro-Emotional Phase Domain Complexity Levels Induced by Affective Video Film ClipsSerap Aydin1 Jun 2020 | IEEE Journal of Biomedical and Health Informatics, Vol. 24, No. 6An Experimental Framework for Assessing Emotions of Stroke Patients using Electroencephalogram (EEG)Wan Khairunizam, Choong Wen Yean, Murugappan Murugappan, Ahmad Kadri Junoh and Zuradzman M. Razlan et al.1 May 2020 | Journal of Physics: Conference Series, Vol. 1529, No. 5Emotion Classification in Parkinson's Disease EEG using RQA and ELMM Murugappan, Waleed B Alshuaib, Ali Bourisly, Sai Sruthi and Wan Khairunizam et al.1 Feb 2020Emotional States Analyze from Scaling Properties of EEG Signals Using Hurst Exponent for Stroke and Normal GroupsChoong Wen Yean, Wan Khairunizam, Mohammad Iqbal Omar, Murugappan Murugappan and Zunaidi Ibrahim et al.4 July 2019Applications of Higher Order Statistics in Electroencephalography Signal Processing: A Comprehensive SurveySeyed Alireza Khoshnevis and Ravi Sankar1 Jan 2020 | IEEE Reviews in Biomedical Engineering, Vol. 13Localization of Spatial activity in Sleep EEGR Chinmayi, Arya Lekshmi, Mohit Gaddipati, Akhila Gopan and Sreeja Narahari et al.1 Dec 2018Multi-task Feature Learning for EEG-based Emotion Recognition Using Group Nonnegative Matrix FactorizationAyoub Hajlaoui, Mohamed Chetouani and Slim Essid1 Sep 2018Relative Wave Energy based Adaptive Neuro-Fuzzy Inference System model for the Estimation of Depth of AnaesthesiaV.K. Benzy, E.A. Jasmin, Rachel Cherian Koshy, Frank Amal and K.P. Indiradevi7 Feb 2018 | Journal of Integrative Neuroscience, Vol. 17, No. 1A P300 potential evaluation wavelet method comparing individuals with high and low risk for alcoholismCarla Diniz Lopes, Tiago Becker, Alice de Jesus Kozakevicius, Alberto A. Rasia-Filho and Benoit Macq et al.19 March 2016 | Neural Computing and Applications, Vol. 28, No. 12Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic ReviewAbeer Al-Nafjan, Manar Hosny, Yousef Al-Ohali and Areej Al-Wabil1 December 2017 | Applied Sciences, Vol. 7, No. 12Parameter pattern discovery in nonlinear dynamic model for EEGs analysisSun-Hee Kim, Christos Faloutsos, Hyung-Jeong Yang, and Seong-Whan Lee18 November 2016 | Journal of Integrative Neuroscience, Vol. 15, No. 03Extracting neurophysiological signals reflecting users' emotional and affective responses to BCI use: A systematic literature reviewGiulia Liberati, Stefano Federici, Emanuele Pasqualotto, Marcia J. Scherer and Stefano Federici28 Oct 2015 | NeuroRehabilitation, Vol. 37, No. 3Time course of EEG oscillations during repeated listening of a well-known ariaLutz Jäncke, Jürg Kühnis, Lars Rogenmoser and Stefan Elmer20 July 2015 | Frontiers in Human Neuroscience, Vol. 9Ultrasound-based tissue characterization and classification of fatty liver disease: A screening and diagnostic paradigmU. Rajendra Acharya, Oliver Faust, Filippo Molinari, S. Vinitha Sree and Sameer P. Junnarkar et al.1 Feb 2015 | Knowledge-Based Systems, Vol. 75Multiple feature extraction and classification of electroencephalograph signal for Alzheimers' with spectrum and bispectrumRuofan Wang, Jiang Wang, Shunan Li, Haitao Yu and Bin Deng et al.1 Jan 2015 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 25, No. 1Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's diseaseR. Yuvaraj, M. Murugappan, Norlinah Mohamed Ibrahim, Kenneth Sundaraj and Mohd Iqbal Omar et al.1 Dec 2014 | International Journal of Psychophysiology, Vol. 94, No. 3Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activityR. Yuvaraj, M. Murugappan, Norlinah Mohamed Ibrahim, Kenneth Sundaraj and Mohd Iqbal Omar et al.1 Nov 2014 | Biomedical Signal Processing and Control, Vol. 14 Recommended Vol. 13, No. 01 Metrics History Received 4 January 2014 Accepted 6 February 2014 Published: 7 March 2014 KeywordsEEGemotionParkinson's diseasebispectrumpower spectrumpattern classificationPDF download
Referência(s)