Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities
2009; Elsevier BV; Volume: 246; Issue: 6 Linguagem: Inglês
10.1016/j.jde.2008.12.006
ISSN1090-2732
Autores Tópico(s)Advanced Differential Geometry Research
ResumoIn this paper we classify the centers, the cyclicity of its Hopf bifurcation and their isochronicity for the polynomial differential systems in R 2 of arbitrary degree d ⩾ 3 odd that in complex notation z = x + i y can be written as z ˙ = ( λ + i ) z + ( z z ¯ ) d − 3 2 ( A z 3 + B z 2 z ¯ + C z z ¯ 2 + D z ¯ 3 ) , where λ ∈ R and A , B , C , D ∈ C . If d = 3 we obtain the well-known class of all polynomial differential systems of the form a linear system with cubic homogeneous nonlinearities.
Referência(s)