Experimental muscle strain injury
1993; SAGE Publishing; Volume: 21; Issue: 2 Linguagem: Inglês
10.1177/036354659302100205
ISSN1552-3365
AutoresDean C. Taylor, James Dalton, Anthony V. Seaber, William E. Garrett,
Tópico(s)Tendon Structure and Treatment
ResumoThe structural and functional strength of a muscle immediately after an experimentally created strain injury was examined to provide clinically relevant information for the early treatment of muscle strain injuries. The extensor digitorum longus muscles of 12 adult male rabbits were studied. Contractile force and shortening, and peak load were determined for control muscles. A nondisruptive strain injury was created by stretching the experimental muscles just short of complete rup ture. Contractile force generation and shortening, and peak load were determined after the experimental strain injury. Peak load was 63% and elongation to rupture was 79% for the experimental muscles relative to the controls. Statistically significant lower values for con tractile force generation and shortening were also seen in the experimental muscles. Histologic and gross ex aminations revealed that incomplete disruptions oc curred near the distal muscle-tendon junction. These experimental data suggest clinical implications, such as 1) a muscle-tendon unit is significantly more susceptible to injury following a strain injury than normal muscle, 2) early return to the uncontrolled environment of athletic competition may place the injured muscle at risk for further injury, and 3) therapeutic regimens designed to achieve an early return to competition may further increase the risk for additional injury by eliminating protective pain mechanisms. Although the decrements in peak load and elongation to failure are less than normal muscle, the values seem high enough to allow mobilization of the injured extremity and functional re habilitation.
Referência(s)