Artigo Acesso aberto Revisado por pares

zTrap: zebrafish gene trap and enhancer trap database

2010; BioMed Central; Volume: 10; Issue: 1 Linguagem: Inglês

10.1186/1471-213x-10-105

ISSN

1471-213X

Autores

Koichi Kawakami, Gembu Abe, Tokuko Asada, Kazuhide Asakawa, R. Fukuda, Aki Ito, Pradeep Lal, Naoko Mouri, Akira Muto, Maximilliano L. Suster, Hitomi Takakubo, Akihiro Urasaki, Hironori Wada, Mikio Yoshida,

Tópico(s)

Zebrafish Biomedical Research Applications

Resumo

Abstract Background We have developed genetic methods in zebrafish by using the Tol2 transposable element; namely, transgenesis, gene trapping, enhancer trapping and the Gal4FF-UAS system. Gene trap constructs contain a splice acceptor and the GFP or Gal4FF (a modified version of the yeast Gal4 transcription activator) gene, and enhancer trap constructs contain the zebrafish hsp70l promoter and the GFP or Gal4FF gene. By performing genetic screens using these constructs, we have generated transgenic zebrafish that express GFP and Gal4FF in specific cells, tissues and organs. Gal4FF expression is visualized by creating double transgenic fish carrying a Gal4FF transgene and the GFP reporter gene placed downstream of the Gal4-recognition sequence (UAS). Further, the Gal4FF-expressing cells can be manipulated by mating with UAS effector fish. For instance, when fish expressing Gal4FF in specific neurons are crossed with the UAS:TeTxLC fish carrying the tetanus neurotoxin gene downstream of UAS, the neuronal activities are inhibited in the double transgenic fish. Thus, these transgenic fish are useful to study developmental biology and neurobiology. Description To increase the usefulness of the transgenic fish resource, we developed a web-based database named z Trap http://kawakami.lab.nig.ac.jp/ztrap/ . The z Trap database contains images of GFP and Gal4FF expression patterns, and genomic DNA sequences surrounding the integration sites of the gene trap and enhancer trap constructs. The integration sites are mapped onto the Ensembl zebrafish genome by in-house Blat analysis and can be viewed on the z Trap and Ensembl genome browsers. Furthermore, z Trap is equipped with the functionality to search these data for expression patterns and genomic loci of interest. z Trap contains the information about transgenic fish including UAS reporter and effector fish. Conclusion z Trap is a useful resource to find gene trap and enhancer trap fish lines that express GFP and Gal4FF in desired patterns, and to find insertions of the gene trap and enhancer trap constructs that are located within or near genes of interest. These transgenic fish can be utilized to observe specific cell types during embryogenesis, to manipulate their functions, and to discover novel genes and cis -regulatory elements. Therefore, z Trap should facilitate studies on genomics, developmental biology and neurobiology utilizing the transgenic zebrafish resource.

Referência(s)