SHORT-TERM AUTONOMIC CONTROL OF CARDIOVASCULAR FUNCTION: A MINI-REVIEW WITH THE HELP OF MATHEMATICAL MODELS
2003; Imperial College Press; Volume: 02; Issue: 02 Linguagem: Inglês
10.1142/s0219635203000275
ISSN1757-448X
Autores Tópico(s)Neuroscience of respiration and sleep
ResumoJournal of Integrative NeuroscienceVol. 02, No. 02, pp. 219-247 (2003) Research ReportsNo AccessSHORT-TERM AUTONOMIC CONTROL OF CARDIOVASCULAR FUNCTION: A MINI-REVIEW WITH THE HELP OF MATHEMATICAL MODELSMAURO URSINO and ELISA MAGOSSOMAURO URSINODepartment of Electronics, Computer Science and Systems, University of Bologna, Cesena, ItalyCorresponding author. and ELISA MAGOSSODepartment of Electronics, Computer Science and Systems, University of Bologna, Cesena, Italyhttps://doi.org/10.1142/S0219635203000275Cited by:31 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractIn this work the main aspects of the short-term regulation of the cardiovascular system are reviewed and critically discussed, laying special emphasis on the role of the autonomic neural mechanisms involved, on their mutual interrelationships and complex integration. All these aspects are summarized with the help of mathematical models developed by the authors in past years. The main characteristics of the uncontrolled system (i.e., the heart and vessels) and of the efferent neural branches (sympathetic and vagal) working on it are first described. Then, the afferent pathways which participate in feedback mechanisms (baroreceptors, chemoreceptors, lung-stretch receptors, direct CNS response), and the feedforward mechanisms anticipating cardiovascular requirements are introduced, and their role discussed with reference to various cardiovascular perturbations (hemorrhage or posture changes, hypoxia, asphyxia, dynamic exercise).Analysis of physiological data via mathematical equations, and results of computer simulations, emphasize the great complexity, richness and variability of the autonomic cardiovascular control, including redundant mechanisms and antagonistic requirements. The use of mathematical models is essential to capture this richness, and to summarize apparent contradictory data into a coherent and comprehensive theoretical setting.Keywords:Autonomic regulationsympathetic systemvaguscardiac outputsystemic arterial pressurebaroreflexchemoreflexhypoxiahypercapniaexercise References F. M. Abboud and M. D. Thames, Handbook of Physiol. Sec. II, Vol. III. The Cardiovascular System: Peripheral Circulation and Organ Blood Flow, eds. J. T. Shepherd, F. M. Abboud and S. R. Geiger (American Physiological Society, Bethesda, Maryland, 1983) pp. 675–753. Google ScholarJ. E. Angell James and M. B. Daly, J. Physiol. 214, 51 (1971). Crossref, Medline, ISI, Google ScholarJ. E. W. Beneken and B. De Wit, Physical Bases of Circulatory Transport: Regulation and Exchange, eds. E. B. Reeve and A. C. Guyton (Saunders, Philadelphia, 1967) pp. 1–45. Google ScholarT. J. Biscoe, M. J. Purves and S. R. Sampson, J. Physiol. 208, 121 (1970). Crossref, Medline, ISI, Google ScholarV. Bishop, A. Malliani and P. Thorén, Handbook of Physiology. Sec. 2: The Cardiovascular System. Vol. III, eds. J. T. Shepherd, F. M. Abboud and S. R. Geiger (The American Physiological Society, Bethesda, MD, 1983) pp. 497–555. Google ScholarM. J. Brunner, A. A. Shoukas and C. L. MacAnespie, Circ. Res. 48, 274 (1981). Crossref, Medline, ISI, Google ScholarH. I. Chenet al., Am. J. Physiol. 237, H153 (1979). Medline, ISI, Google ScholarJ. H. Coote, Cardiovascular Regulation, eds. D. Jordan and J. Marshall (Portland, London, 1995) pp. 93–111. Google ScholarR. H. Cox and R. J. Bagshaw, Circ. Res. 37, 772 (1975). Crossref, Medline, ISI, Google ScholarD. J. C. Cunningham, P. A. Robbins and C. B. Wolff, Handbook of Physiology. Sec. 3: Respiratory System, Vol. 2, Control of Breathing, Part 2, eds. A. P. Fishmanet al. (American Physiological Society, Bethesda, MD, 1986) pp. 475–528. Google Scholar M. B. Daly , Peripheral Arterial Chemoreceptors and Respiratory-Cardiovascular Integration ( Oxford University Press , Oxford , 1997 ) . Google ScholarM. B. Daly, J. L. Hazzledine and A. Ungar, J. Physiol. 188, 331 (1967). Crossref, Medline, ISI, Google ScholarM. B. Daly and M. J. Scott, J. Physiol. 162, 555 (1962). Crossref, Medline, ISI, Google ScholarR. W. deBoer, J. M. Karemaker and J. Strackee, Am. J. Physiol. 253, H680 (1987). Medline, ISI, Google ScholarD. L. Eckberg, Circ. Res. 47, 208 (1980). Crossref, Medline, ISI, Google Scholar D. L. Eckberg and P. Sleight , Human Baroreflexes in Health and Disease ( Oxford Univ. Press , Oxford, UK , 1992 ) . Google ScholarR. S. Fitzgerald and D. C. Parks, Respir. Physiol. 12, 218 (1971), DOI: 10.1016/0034-5687(71)90054-5. Crossref, Medline, Google ScholarC. V. Grenway and G. D. Scott, Can. J. Physiol. Pharmacol. 68, 1299 (1990). Crossref, Medline, ISI, Google ScholarF. S. Grodins, J. Buell and A. J. Bart, J. Appl. Physiol. 22(2), 260 (1967). Crossref, Medline, ISI, Google ScholarA. C. Guyton, Textbook of Medical Physiology (Saunders, Philadelphia, 1986) pp. 382–525. Google ScholarA. C. Guyton, T. G. Coleman and H. J. Granger, Annual Rev. Physiol. 34, 13 (1972), DOI: 10.1146/annurev.ph.34.030172.000305. Crossref, Medline, ISI, Google ScholarR. Hainsworth, Am. J. Physiol. 226(2), 247 (1974). Crossref, Medline, ISI, Google ScholarF. Karimet al., Circ. Res. 46, 77 (1980). Crossref, Medline, ISI, Google ScholarR. I. Kitney, J. Biomed. Eng. 1, 89 (1979), DOI: 10.1016/0141-5425(79)90063-3. Crossref, Medline, Google ScholarR. C. Koehler, B. W. McDonald and J. A. Krasney, Am. J. Physiol. 239, H545 (1980). Medline, ISI, Google ScholarH. A. Kontoset al., J. Appl. Physiol. 23(3), 381 (1967). Crossref, Medline, ISI, Google ScholarT. Kubotaet al., Circ. Res. 70, 1044 (1992). Crossref, Medline, ISI, Google ScholarS. Lahiri and R. G. Delaney, Respir. Physiol. 24, 249 (1975), DOI: 10.1016/0034-5687(75)90017-1. Crossref, Medline, Google ScholarM. H. Laughlin, Am. J. Physiol. 277, S244 (1999). Medline, ISI, Google Scholar J. R. Levick , An Introduction to Cardiovascular Physiology ( Butterworth-Heinemann Ltd. , Oxford , 1991 ) . Google ScholarS. F. Lewiset al., J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54(5), 1314 (1983). Medline, ISI, Google ScholarX. Li and J. Bai, Med. Biol. Eng. Comput. 39(4), 480 (2001), DOI: 10.1007/BF02345371. Crossref, Medline, ISI, Google ScholarF. Lioy, B. D. Hanna and C. Polosa, J. Auton. Nerv. Syst. 3, 1 (1981), DOI: 10.1016/0165-1838(81)90025-4. Crossref, Medline, Google ScholarE. Magosso and M. Ursino, Am. J. Physiol. Heart Circ. Physiol. 281, H2036 (2001). Crossref, Medline, ISI, Google ScholarE. Magosso and M. Ursino, Med. Biol. Eng. Comput. 40, 660 (2002), DOI: 10.1007/BF02345305. Crossref, Medline, ISI, Google ScholarG. Mancia and A. L. Mark, Handbook of Physiology. Sec. 2: The Cardiovascular System. Vol. III, eds. J. T. Shepherd, F. M. Abboud and S. R. Geiger (The American Physiological Society, Bethesda, MD, 1983) pp. 755–793. Google ScholarJ. M. Marshall, Physiol. Rev. 74, 543 (1994). Crossref, Medline, ISI, Google ScholarR. W. McPherson, D. Eimerl and R. J. Traystman, Am. J. Physiol. 253, H890 (1987). Medline, ISI, Google ScholarR. W. McPherson, R. C. Koehler and R. J. Traystman, Am. J. Physiol. 266, H476 (1994). Medline, ISI, Google ScholarJ. Melbinet al., Am. J. Physiol. Heart Circ. Physiol. 243, H499 (1982). Crossref, Google ScholarF. Melchioret al., J. Appl. Physiol. 77(2), 630 (1994). Crossref, Medline, ISI, Google ScholarA. H. Mines, Respiratory Physiology (Raven Press, New York, 1993) pp. 1–73. Google ScholarJ. A. Pawelczyket al., J. Appl. Physiol. 73(5), 1838 (1992). Crossref, Medline, ISI, Google ScholarJ. T. Potts, T. Hatanaka and A. A. Shoukas, Am. J. Physiol. 270, H988 (1996). Medline, ISI, Google ScholarW. J. Reynolds and H. T. J. Milhorn, J. Appl. Physiol. 35(2), 187 (1973). Crossref, Medline, ISI, Google ScholarC. V. Rohlicek and C. Polosa, Am. J. Physiol. 241, H679 (1981). Medline, ISI, Google Scholar L. B. Rowell , Human Cardiovascular Control ( Oxford University Press , New York , 1993 ) . Crossref, Google ScholarK. Sagawa, Physical Bases of Circulatory Transport: Regulation and Exchange, eds. E. B. Reeve and A. C. Guyton (Saunders, Philadelphia, 1967) pp. 129–139. Google ScholarK. Sagawa, Handbook of Physiology. Sec. 2: The Cardiovascular System. Vol. III, eds. J. T. Shepherd, F. M. Abboud and S. R. Geiger (The American Physiological Society, Bethesda, MD, 1983) pp. 453–496. Google ScholarR. M. Schmidt, M. Kumada and K. Sagawa, Am. J. Physiol. 223, 1 (1972). Crossref, Medline, ISI, Google ScholarL. M. Sheldhalet al., J. Am. Coll. Cardiol. 10, 1254 (1987). Crossref, Medline, ISI, Google ScholarA. A. Shoukas and M. Brunner, Circ. Res. 47, 249 (1980). Crossref, Medline, ISI, Google ScholarA. A. Shoukas and K. Sagawa, Circ. Res. 33, 22 (1973). Crossref, Medline, ISI, Google ScholarJ. L. Spencer, E. Firouztale and R. B. Mellins, Annals Biomed. Eng. 7, 59 (1979), DOI: 10.1007/BF02364439. Crossref, Medline, ISI, Google ScholarJ. A. Ulatowskiet al., Am. J. Physiol. 274, H1933 (1998). Medline, Google ScholarM. Ursino, Am. J. Physiol. 275, H1733 (1998). Medline, Google ScholarM. Ursino, IEEE Trans. Biomed. Eng. 46, 382 (1999), DOI: 10.1109/10.752935. Crossref, Medline, ISI, Google ScholarM. Ursino, M. Antonucci and E. Belardinelli, Am. J. Physiol. 267, H2531 (1994). Medline, Google ScholarM. Ursino and E. Magosso, Am. J. Physiol. Heart. Circ. Physiol. 279, H149 (2000). Crossref, Medline, ISI, Google ScholarM. Ursino and E. Magosso, Am. J. Physiol. Heart Circ. Physiol. 279, H166 (2000). Crossref, Medline, ISI, Google ScholarM. Ursino and E. Magosso, Respirat. Physiol. Neurobiol. (ex Respirat. Physiol.) 130, 99 (2002), DOI: 10.1016/S0034-5687(01)00335-8. Crossref, Medline, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 31A multiscale model of the cardiovascular system that regulates arterial pressure via closed loop baroreflex control of chronotropism, cell-level contractility, and vascular toneHossein Sharifi, Charles K. Mann, Jonathan F. Wenk and Kenneth S. Campbell15 September 2022 | Biomechanics and Modeling in Mechanobiology, Vol. 21, No. 6Baroreflex sensitivity derived from the Valsalva manoeuvre: A physiological protective factor for anxiety induced by breathing CO2-enriched airChiara Di Credico, Michael Rosenberg, Peter Eastwood, Peter Buzzacott and Jennifer Walsh1 Sep 2022 | International Journal of Psychophysiology, Vol. 179Review of applications and challenges of quantitative systems pharmacology modeling and machine learning for heart failureLimei Cheng, Yuchi Qiu, Brian J. Schmidt and Guo-Wei Wei12 October 2021 | Journal of Pharmacokinetics and Pharmacodynamics, Vol. 49, No. 1Spectral analysis of cardiovascular oscillations in the 7-day regimen of losartan administration with and without cold stressYia-Ping Liu, Yu-Chieh Lin, Chen-Cheng Lin, Shi-Hung Tsai and Che-Se Tung1 Jan 2022 | Chinese Journal of Physiology, Vol. 65, No. 4Cardiorespiratory Coupling: A Review of the Analysis MethodsV. Tonu, V. Vovc and N. Enache18 September 2019Autonomic control of cardiorespiratory coupling in healthy subjects under moderate physical exercisesAnton R. Kiselev, Ekaterina I. Borovkova, Margarita A. Simonyan, Yuri M. Ishbulatov and Artak Yu. Ispiryan et al.18 December 2019 | Russian Open Medical Journal, Vol. 8, No. 4Nonlinear single-input single-output model-based estimation of cardiac output for normal and depressed casesIslam Ismail Mohamed, Mohamed Abdelkader Aboamer, Ahmad Taher Azar, Khaled Wahba and Andy Schumann et al.30 October 2017 | Neural Computing and Applications, Vol. 31, No. 7Credibility Evidence for Computational Patient Models Used in the Development of Physiological Closed-Loop Controlled Devices for Critical Care MedicineBahram Parvinian, Pras Pathmanathan, Chathuri Daluwatte, Farid Yaghouby and Richard A. Gray et al.26 March 2019 | Frontiers in Physiology, Vol. 10The relationship between ambient carbon monoxide and heart rate variability—a systematic world review—2015Emanuel Tirosh and Izhak Schnell13 September 2016 | Environmental Science and Pollution Research, Vol. 23, No. 21Closed-Loop Fluid Resuscitation Control Via Blood Volume EstimationRamin Bighamian, Chang-Sei Kim, Andrew T. Reisner and Jin-Oh Hahn13 July 2016 | Journal of Dynamic Systems, Measurement, and Control, Vol. 138, No. 11Linear model-based estimation of blood pressure and cardiac output for Normal and Paranoid casesMohamed Abdelkader Aboamer, Ahmad Taher Azar, Khaled Wahba and Abdallah S. A. Mohamed25 March 2014 | Neural Computing and Applications, Vol. 25, No. 6Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of 0.1 HzА.А. Гриневич and A.A. Grinevich30 September 2014 | Математическая биология и биоинформатика, Vol. 9, No. 2Relationship between Stroke Volume and Pulse Pressure during Blood Volume Perturbation: A Mathematical AnalysisRamin Bighamian and Jin-Oh Hahn1 Jan 2014 | BioMed Research International, Vol. 2014The study of the dependence of the human heart rate from the frequency of controlled breathingА.А. Гриневич and A.A. Grinevich9 December 2013 | Математическая биология и биоинформатика, Vol. 8, No. 2Interstitial fluid shifts to plasma compartment during blood donationFumiko Saito, Tomoko Shimazu, Junko Miyamoto, Taisei Maemura and Masahiro Satake26 February 2013 | Transfusion, Vol. 53, No. 11Reflejos cardiopulmonares. Implicación en anestesiologíaR.A. Guerri-Guttenberg, F. Siaba-Serrate and F.J. Cacheiro1 Oct 2013 | Revista Española de Anestesiología y Reanimación, Vol. 60, No. 8Effect of large arteries on blood pressure variabilityAlberto P. Avolio, Ke Xu and Mark Butlin1 Jul 2013Development of Patient Specific Cardiovascular Models Predicting Dynamics in Response to Orthostatic Stress ChallengesJohnny T. Ottesen, Vera Novak and Mette S. Olufsen11 September 2012Interaction of 0.1-Hz oscillations in heart rate variability and distal blood flow variabilityA. R. Kiselev, V. S. Khorev, V. I. Gridnev, M. D. Prokhorov and A. S. Karavaev et al.3 June 2012 | Human Physiology, Vol. 38, No. 3The effects of catalase inhibition into the fourth cerebral ventricle on the Bezold-Jarisch reflex in spontaneously hypertensive ratsJosé Raul Cisternas, Vitor E. Valenti, Monica A. Sato, Fernando L. A. Fonseca, Paulo H. N. Saldiva, Carlos B. De Mello Monteiro, Modesto Leite Rolim Neto, Luciano M. R. Rodrigues, and Luiz Carlos De Abreu30 April 2012 | Journal of Integrative Neuroscience, Vol. 10, No. 04Microarray and Functional Cluster Analysis Implicates Transforming Growth Factor Beta1 in Endothelial Cell Dysfunction in a Swine Hemorrhagic Shock ModelMarlin Wayne Causey, Zachary S. Hoffer, Seth L. Miller, Laurel J. Huston and Steve A. Satterly et al.1 Sep 2011 | Journal of Surgical Research, Vol. 170, No. 1CENTRAL N-ACETYLCYSTEINE EFFECTS ON BAROREFLEX IN JUVENILE SPONTANEOUSLY HYPERTENSIVE RATSVITOR E. VALENTI, LUIZ CARLOS DE ABREU, MONICA A. SATO, PAULO H. N. SALDIVA, FERNANDO L. A. FONSECA, GISELE GIANNOCCO, ANDREAS R. P. RIERA, and CELSO FERREIRA30 April 2012 | Journal of Integrative Neuroscience, Vol. 10, No. 02CATALASE INHIBITION INTO THE FOURTH CEREBRAL VENTRICLE AFFECTS BRADYCARDIC PARASYMPATHETIC RESPONSE TO INCREASE IN ARTERIAL PRESSURE WITHOUT CHANGING THE BAROREFLEXVITOR E. VALENTI, LUIZ CARLOS DE ABREU, MONICA A. SATO, FERNANDO L. A. FONSECA, ANDRÉS R. PÉREZ RIERA, and CELSO FERREIRA30 April 2012 | Journal of Integrative Neuroscience, Vol. 10, No. 01An integrative model of respiratory and cardiovascular control in sleep-disordered breathingLimei Cheng, Olga Ivanova, Hsing-Hua Fan and Michael C.K. Khoo1 Nov 2010 | Respiratory Physiology & Neurobiology, Vol. 174, No. 1-2Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressureJohn W. Osborn, Viktoria A. Averina and Gregory D. Fink12 March 2009 | Experimental Physiology, Vol. 94, No. 4Brain structures mediating cardiovascular arousal and interoceptive awarenessOlga Pollatos, Rainer Schandry, Dorothee P. Auer and Christian Kaufmann1 Apr 2007 | Brain Research, Vol. 1141Respective impacts of aortic stenosis and systemic hypertension on left ventricular hypertrophyDamien Garcia, Philippe Pibarot, Lyes Kadem and Louis-Gilles Durand1 Jan 2007 | Journal of Biomechanics, Vol. 40, No. 5The Renal Dopaminergic System, Hypertension, and Salt SensitivityRobin A. Felder, Robert M. Carey and Pedro A. Jose1 Jan 2007Mechanisms of Disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivityRobin A Felder and Pedro A Jose1 Nov 2006 | Nature Clinical Practice Nephrology, Vol. 2, No. 11Arterial Blood Pressure ProcessingMarco Di Rienzo, Paolo Castiglioni and Gianfranco Parati14 April 2006Assessing physiological complexityW. W. Burggren and M. G. Monticino1 Sep 2005 | Journal of Experimental Biology, Vol. 208, No. 17 Recommended Vol. 02, No. 02 Metrics History Received 25 June 2003 Accepted 1 August 2003 KeywordsAutonomic regulationsympathetic systemvaguscardiac outputsystemic arterial pressurebaroreflexchemoreflexhypoxiahypercapniaexercisePDF download
Referência(s)