Revisão Revisado por pares

CTLA‐4, a Negative Regulator of T‐Lymphocyte Activation

1996; Wiley; Volume: 153; Issue: 1 Linguagem: Inglês

10.1111/j.1600-065x.1996.tb00925.x

ISSN

1600-065X

Autores

Paul Waterhouse, Luc E. M. Marengère, Hans‐Wtlli Mittrücker, Tak W. Mak,

Tópico(s)

Signaling Pathways in Disease

Resumo

Immunological ReviewsVolume 153, Issue 1 p. 183-207 CTLA-4, a Negative Regulator of T-Lymphocyte Activation Paul Waterhouse, Corresponding Author Paul Waterhouse Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Paul Waterhouse, Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, 620 University Ave, Toronto, Ontario, Canada M5G 2CI.Search for more papers by this authorLuc E. M. Marèngere, Luc E. M. Marèngere Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Search for more papers by this authorHans-Wtlli Mittrücker, Hans-Wtlli Mittrücker Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Search for more papers by this authorTak W. Mak, Tak W. Mak Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Search for more papers by this author Paul Waterhouse, Corresponding Author Paul Waterhouse Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Paul Waterhouse, Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, 620 University Ave, Toronto, Ontario, Canada M5G 2CI.Search for more papers by this authorLuc E. M. Marèngere, Luc E. M. Marèngere Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Search for more papers by this authorHans-Wtlli Mittrücker, Hans-Wtlli Mittrücker Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Search for more papers by this authorTak W. Mak, Tak W. Mak Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, and Amgen Institute, Toronto, Ontario, Canada.Search for more papers by this author First published: October 1996 https://doi.org/10.1111/j.1600-065X.1996.tb00925.xCitations: 63AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Abraham, R. T., Karnitz, L. M., Secrist, J. P & Leibson, P. J. (1992) Signal transduction through the T-cell antigen receptor. Trends Biol. Sci. 17, 434. 10.1016/0968-0004(92)90015-2 CASPubMedWeb of Science®Google Scholar August, A., Gibson, S., Kawakami, Y., Kawakami, T., Mills, G. B, Dupont, B. (1994) CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase Itk/Emt in the human Jurkat leukemic T-cell line. Proc. Natl. Acad Sci. USA. 91, 9347. 10.1073/pnas.91.20.9347 CASPubMedWeb of Science®Google Scholar Azuma, M., Ito, D., Yagita, H., Okumura, K., Phillips, J. H., Lanier, L. L. & Somoza, C. (1993a) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366, 76. 10.1038/366076a0 CASPubMedWeb of Science®Google Scholar Azuma M., Yssel, H., Phillips, J. H., Spits, H. & Lanier, L. L. (1993b) Functional expression of B7/BB I on activated T lymphocytes. J. Exp. Med. 177, 845. 10.1084/jem.177.3.845 CASPubMedWeb of Science®Google Scholar Bell, G. M., Fargnoli, J., Bolen, J. B., Kish, L. & Imboden J. (1996) The SH3 domain of p56 (Lck) binds to proline-rich sequences in the cytoplasmic domain of CD2. J. Exp. Med. 183, 169. 10.1084/jem.183.1.169 CASPubMedWeb of Science®Google Scholar Berridge, M. J. (1993) Inositol triphosphate and calcium signaling. Nature 361, 315. 10.1038/361315a0 CASPubMedWeb of Science®Google Scholar Bolen, J. B. (1995) Protein tyrosine kinases in the initiation of antigen receptor signaling. Curr. Opin. Immunol. 7. 306. 10.1016/0952-7915(95)80103-0 CASPubMedWeb of Science®Google Scholar Boussiotis, V. A., Freeman, G.J., Gribben, J. G., Daley, J., Gray, G. & Nadler, L. M. (1993) Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation. Proc. Natl. Acad Sci. USA 90, 11059. 10.1073/pnas.90.23.11059 CASPubMedWeb of Science®Google Scholar Brunet, J. F. Denizot E, Luciani, M.-F., Roux-Dosseto, M., Suzan, M., Mattei, M.-G. & Golstein, P. (1987) A new member of the immunoglobulin superfamily-CTLA-4. Nature 438, 267. 10.1038/328267a0 CASPubMedWeb of Science®Google Scholar Buday, L., Egan, S.E., Viciana, D. A., Cantrell, D.A. & Downward, J. (1994) A complex of Grb2 adaptor protein, Sos exchange factor, and a 36kDa membrane-bound tyrosine- phosphoprotein is implicated in ras activation in T cells. J. Biol. Chem. 269, 9019. CASPubMedWeb of Science®Google Scholar Burshtyn, D. N., Scharenberg, A. M., Wagtman, N., Rajagopalan, S., Berrada, K., Yi, T., Kinet, J.-P & Long, E.O. (1996) Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 4, 77. 10.1016/S1074-7613(00)80300-3 CASPubMedWeb of Science®Google Scholar Bustelo, X. R., Ledbetter, J. A. & Barbacid M. (1992). Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 356, 68. 10.1038/356068a0 CASPubMedWeb of Science®Google Scholar Cai, Y.-C. Cefai, D, Schneider, H., Raab, M., Nabavi, N. & Rudd, C. E. (1995) Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28 mediated costimulation. Immunity 3, 417. 10.1016/1074-7613(95)90171-X CASPubMedWeb of Science®Google Scholar Chan, A. C., Irving, B. A., Fraser, J. D. & Weiss, A. (1991) The chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation with ZAP-70, a 70kDa tyrosine phosphoprotein. Proc. Natl. Acad. Sci. USA 88, 9166. 10.1073/pnas.88.20.9166 CASPubMedWeb of Science®Google Scholar Chan, A. C., Iwashima, M., Turek, C. W & Weiss, A. (1992) ZAP-70: a 70kD protein- tyrosine kinase that associates with the TCR C chain. Cell 71, 649. 10.1016/0092-8674(92)90598-7 CASPubMedWeb of Science®Google Scholar Chan, A.C, Desai, D. M. & Weiss, A. (1994) The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol. 12, 555. 10.1146/annurev.iy.12.040194.003011 CASPubMedWeb of Science®Google Scholar Charbonneau, H. & Tonks, N. K. (1992) 1002 protein phosphatases Annu. Rev. Cell Biol. 8, 463. 10.1146/annurev.cb.08.110192.002335 CASPubMedWeb of Science®Google Scholar Chow, L. M. L., Fournel, M., Davidson, D. & Veillette, A. (1993) Negative regulation of T- cell receptor signaling by tyrosine protein kinase p50Csk. Nature 365, 156. 10.1038/365156a0 CASPubMedWeb of Science®Google Scholar Cohen, G. B., Ren, R. & Baltimore, D. (1995) Modular binding domains in signal transduction proteins. Cell 80, 237. 10.1016/0092-8674(95)90406-9 CASPubMedWeb of Science®Google Scholar Crabtree, G. R. (1989) Contingent genetic regulatory events in T lymphocyte activation. Science 243, 355. 10.1126/science.2783497 CASPubMedWeb of Science®Google Scholar Crews, C.M. & Erikson, R. L. (1993) Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell 74, 215. 10.1016/0092-8674(93)90411-I CASPubMedWeb of Science®Google Scholar Cyster, J. G. Goodnow, C. C. (1995) Protein tyrosine phosphatase lC negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2, 13. 10.1016/1074-7613(95)90075-6 CASPubMedWeb of Science®Google Scholar Damle, N. K., Klussman, K., Leytze, G., Myrdal, S., Aruffo, A., Ledbetter, J. A. & Linsley, PS. (1994) Costimulation of T lymphocytes with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 induces functional expression of CTLA-4. a second receptor for B7. Immunol. 152, 2686. CASPubMedWeb of Science®Google Scholar Dariavach, P, Mattei, M. G., Golstein, P LeFranc, M.P. (1988) Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur. J. Immunol. 18, 1901. 10.1002/eji.1830181206 CASPubMedWeb of Science®Google Scholar Desai, D. M., Sap J., Schlessinger, J. & Weiss, A. (1993) Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73, 541. 10.1016/0092-8674(93)90141-C CASPubMedWeb of Science®Google Scholar Desai, D. M., Sap, J., Silvennoinen, Q, Schlessinger, J. & Weiss, A. (1994) The catalytic activity of the CD45 membrane-proximal phosphatase domain is required for TCR signaling and regulation. EMBO J. 13, 4002. 10.1002/j.1460-2075.1994.tb06716.x CASPubMedWeb of Science®Google Scholar Doody, G. M., Justement, L. B., Delibrias, C. C., Mathews, R. J., Lin, J., Thomas, M. L. & Fearon, D. T. (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP Science 269, 242. 10.1126/science.7618087 CASPubMedWeb of Science®Google Scholar Fantl, W. J., Escobedo, J. A., Martin, G. A., Turck, C. W., del Rosario, M., McCormick, F & Williams, L. T. (1992) Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69, 413. 10.1016/0092-8674(92)90444-H CASPubMedWeb of Science®Google Scholar Feng, G. S., Hui, C. C. & Pawson, T (1993). SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinase. Science 259, 1607. 10.1126/science.8096088 CASPubMedWeb of Science®Google Scholar Fernandez-Ruiz, E., Somoza, C., Sanchez Madrid, F & Lanier, L.L. (1995) CD28/CTLA-4 ligands; the gene encoding CD86 (B70/B7.2) maps to the same region as CD80 (B7/B7.1) gene in human chromosome 3ql3-q23. Eur. J. Immunol 25, 1453. 10.1002/eji.1830250548 CASPubMedWeb of Science®Google Scholar Fischer, E. H., Charbonneau, H. & Tonks, N. K. (1991) Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253, 401. 10.1126/science.1650499 CASPubMedWeb of Science®Google Scholar Freeman, G. J., Freedman, A. S., Segil, J. M., Lee, G., Whitman, J. F & Nadler, J. M. (1989) B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol 143, 2714. 10.4049/jimmunol.143.8.2714 CASPubMedWeb of Science®Google Scholar Freeman, G. J., Lombard, D. B., Gimmi, C. D., Brod, S. A., Lee, K., Laning, J. C., Hafler, D. A., Dorf, M. E., Gray, G. S., Reiser, H., June, C. H., Thompson, C. B. & Nadler, L. M. (1992) CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation. Expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production. Immunol 149, 3795. CASPubMedWeb of Science®Google Scholar Freeman, G. J., Borriello, F., Hodes, R. J., Reiser, H., Hathcock, K. S., Laszio, G., McKnight, A. J., Kim, J., Du, L., Lombard, D. B., Gray, G. S., Nadler, L. M. & Sharpe, A. H. (1993) Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 262, 907. 10.1126/science.7694362 CASPubMedWeb of Science®Google Scholar Gribbon, J. G., Freeman, G. J., Boussiotis, V. A., Rennert, P, Jellis, C. L., Greenfield, E., Barber, M., Restivo, V. A., Ke, X. Y., Gray, G. S. & Nadler, L. M. (1995) CTLA4 mediates antigen-specific apoptosis of human T-ceils. Proc. Natl Acad Sci. USA 92, 811. 10.1073/pnas.92.3.811 PubMedWeb of Science®Google Scholar Harper, K., Balzano, C., Rotivier, E., Mattei, M. G., Luciani, M. F. & Golstein, P. (1991) CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location, Immunol. 147, 1037. CASPubMedWeb of Science®Google Scholar Hathcock, K. S., Laszlo, G., Dickler, H. B., Bradshaw, J., Linsley, P. & Hodes, R. J. (1993) Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262, 905. 10.1126/science.7694361 CASPubMedWeb of Science®Google Scholar Howe, L. R. & Weiss, A. (1995) Multiple kinases mediate T-cell-receptor signaling. Trends Biol. Sci. 20, 59. 10.1016/S0968-0004(00)88958-6 CASPubMedWeb of Science®Google Scholar Huang, X., Li, Y., Tanaka, K., Moore, K. G. & Hayashi, J. I. (1995) Cloning and characterization of LNK, a signal-transduction protein that links T-cell receptor activation signal to phospholipase C-gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 92, 11618. 10.1073/pnas.92.25.11618 CASPubMedWeb of Science®Google Scholar Hunter, T. (1989) Protein-tyrosine phosphatases: the other side of the coin. Cell 58, 1013. 10.1016/0092-8674(89)90496-0 CASPubMedWeb of Science®Google Scholar Hunter, T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225. 10.1016/0092-8674(95)90405-0 CASPubMedWeb of Science®Google Scholar Hurley, T. R., Hyman, R. & Sefton, B. M. (1993) Differential effects of expression of the CD45 tyrosine protein phosphatase on the tyrosine phosphorylation of the lck, fyn, and c-src tyrosine protein kinases. Mol Cell Biol. 13, 1651. 10.1128/MCB.13.3.1651 CASPubMedWeb of Science®Google Scholar Hutchcroft, J. E., Franklin, D. P, Tsai, B., Harrison-Findik, D., Varticovski, L. & Bierer, B. A. (1995) Phorbol ester treatment inhibits phosphatidylinositol 3-kinase activation by, and association with, CD28, a T-lymphocyte surface receptor. Proc. Natl. Acad. Sci USA 92, 8808. 10.1073/pnas.92.19.8808 CASPubMedWeb of Science®Google Scholar June, C. H., Bluestone, J. A., Nadler, L. M. & Thompson, C. B. (1994) The B7 and CD28 receptor families. Immunol Today 15, 321. 10.1016/0167-5699(94)90080-9 CASPubMedWeb of Science®Google Scholar Karin, M. & Smeal, T (1992) Control of transcription factors by signal transduction pathways, the beginning of the end. Trends Biol. Sci. 17, 418. 10.1016/0968-0004(92)90012-X CASPubMedWeb of Science®Google Scholar Kashishian, A., Kazlauskas, A. & Cooper, J. (1992) Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI3 kinase in vivo. EMBO J. 11, 1373. 10.1002/j.1460-2075.1992.tb05182.x CASPubMedWeb of Science®Google Scholar Kearney, E. R., Walunas, T. L., Karr, R. W., Morton, P. A., Loh, D. Y., Bluestone, J. A. & Jenkins, M. K. (1995) Antigen-dependent clonal expansion of a trace population of antigen-specific CD4(+) T-cells in vivo is dependent on cd28 costimulation and inhibited by CTLA-4. Immunol 155, 1032. CASPubMedWeb of Science®Google Scholar Klingmuller, U, Lorenz, U, Cantley, L. C., Neel, B. G. & Lodish, H. F (1995) Specific recruitment of SH-PTPl to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729. 10.1016/0092-8674(95)90351-8 PubMedWeb of Science®Google Scholar Koch, C. A., Anderson, D., Moran, M. F., Ellis, C. & Pawson, T. (1991) SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252, 668. 10.1126/science.1708916 CASPubMedWeb of Science®Google Scholar Koretzky, G. A., Picus, J., Thomas, M. L. & Weiss, A. (1990) Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 66. 10.1038/346066a0 CASPubMedWeb of Science®Google Scholar Krummel, M. F & Allison, J. P (1995) CD28 and CLTA-4 have opposing effects on the response of T-cells to stimulation. Exp. Med. 182, 459. 10.1084/jem.182.2.459 CASPubMedWeb of Science®Google Scholar Kuiper, H. M., Brouwer, M., Linsley, P. S. & Van-Lier, R.A (1995) Activated T ceils can induce high levels of CTLA-4 expression on B cells. Immunol 155, 1776. CASPubMedWeb of Science®Google Scholar Kupfer, A. & Singer, S. J. (1989) The specific interaction of helper T cells and antigen-presenting B cells IV. Membrane and cytoskeletal reorganization in the bound T cell as a function of antigen dose. J. Exp. Med. 182, 459. PubMedWeb of Science®Google Scholar Law, C.-L., Sidorenko, S., Chandran, K. A., Zhao, Z., Shen, S.-H., Fischer, E. H. & Clark, E. A. (1996) CD22 associates with protein tyrosine phosphatase IC, Syk, and phospholipase C-yl upon B cell activation. J. Exp. Med. 183, 547. 10.1084/jem.183.2.547 CASPubMedWeb of Science®Google Scholar Leach, D. R., Krummel, M. F & Allison, J. P (1996) Enhancement of antitumor immunity by CTLA4 blockade. Science 271, 1734. 10.1126/science.271.5256.1734 CASPubMedWeb of Science®Google Scholar Lindsten, T., Lee, K. P, Harris, E. S., Petryniak, B., Craighead, N., Reynolds, P. J., Lombard, D. B., Freeman, G. J., Nadler, L. M., Gray, G. S., Thompson, C. B. & June, C. H. (1993) Characterization of CTLA-4 structure and expression on human T cells. Immunol. 151, 3489. CASPubMedWeb of Science®Google Scholar Linsley, P. S. (1995) Distinct roles for CC28 and cytotoxic T-lymphocyte-associated mol-ecule-4 receptors during T-cell activation. J. Exp. Med. 182, 289. 10.1084/jem.182.2.289 CASPubMedWeb of Science®Google Scholar Linsley, P. S. & Ledbetter, J. A. (1993) The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol. 11, 191. 10.1146/annurev.iy.11.040193.001203 CASPubMedWeb of Science®Google Scholar Linsley, P. S., Clark, E. A, & Ledbetter, J. A. (1990) T-cell antigen CD28 mediates adhesion with B ceils by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. USA 87, 5031. 10.1073/pnas.87.13.5031 CASPubMedWeb of Science®Google Scholar Linsley, P. S., Brady, W., Grosmaire, L., Aruffo, A., Damle, N. K. & Ledbetter, J. A. (1991a) Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interieukin 2 mRNA accumulation. Exp. Med. 173, 721. 10.1084/jem.173.3.721 CASPubMedWeb of Science®Google Scholar Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L. S., Damle, N. K. & Ledbetter, J.A. (1991b) CTLA-4 is a second receptor for the B cell activation antigen B7. Exp. Med. 174, 561. 10.1084/jem.174.3.561 CASPubMedWeb of Science®Google Scholar Linsley, P. S., Greene, J. L., Tan, P. Bradshaw, J., Ledbetter, J. A., Anasetti, C. & Damle, N. K. (1992) Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med. 176, 1595. 10.1084/jem.176.6.1595 CASPubMedWeb of Science®Google Scholar Linsley, P. S., Bradshaw, J., Urnes, M., Grosmaire, L. & Ledbetter, J. A. (1993) CD28 engagement by B7/BB-1 induces transient down-regulation of CD28 synthesis and prolonged unresponsiveness to CD28 signaling. J. Immunol. 150, 3161. CASPubMedWeb of Science®Google Scholar Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A. & Peach, R. (1994) Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793. 10.1016/S1074-7613(94)80021-9 CASPubMedWeb of Science®Google Scholar Linsley, P. S., Nadler, S. G., Bajorath, J., Peach, R., Leung, H. T., Rogers, J., Bradshaw, J., Stebbins, M., Leytze, G., Brady, W., Malacko, A. R., Marquardt, H. & Shaw, S. Y. (1995) Binding stoichiometry of the cytotoxic T lymphocyte-associated moIecule-4 (CrLA-4). A disulfide-Iinked homodimer binds two CD86 molecules. Biol. Chem. 270, 15417. 10.1074/jbc.270.25.15417 CASPubMedWeb of Science®Google Scholar Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I. & Schreiber, S. L. (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FK506 complexes. Cell 66, 807. 10.1016/0092-8674(91)90124-H CASPubMedWeb of Science®Google Scholar McFarland, E. D., Hurley, T. R., Pingel, J. T., Sefton, B. M., Shaw, A. & Thomas, M. L. (1993) Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc. Natl. Acad. Sci USA 90, 1402. 10.1073/pnas.90.4.1402 CASPubMedWeb of Science®Google Scholar McKenney, D. W., Onodera, H., Gorman, L., Mimura, T. & Rothstein, D. M. (1995) Distinct isoforms of the CD45 protein-tyrosine phosphatase differentially regulate interleukin 2 secretion and activation signal pathways involving Vav in T cells. J. Biol Chem. 270, 24949. 10.1074/jbc.270.42.24949 CASPubMedWeb of Science®Google Scholar Marengere, L. E. M. & Pawson, T (1994) Structure and function of SH2 domains. J. Cell sci 18 97. 10.1242/jcs.1994.Supplement_18.14 CASPubMedGoogle Scholar Marengere, L. E. M., Waterhouse, P, Duncan, G. S., Mittrucker, H.-W, Feng, G.-S. & Mak, T. W. (1996) Regulation of T cell receptor signaling by tyrosine-phosphatase Syp association with CTLA-4. Science (in press). 10.1126/science.272.5265.1170 PubMedWeb of Science®Google Scholar Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179. 10.1016/0092-8674(95)90401-8 CASPubMedWeb of Science®Google Scholar Minami, Y., Kono, T., Miyazaki, T & Taniguchi, T (1993) The IL-2 receptor complex: its structure, function, and target genes. Annu. Rev. Immunol. 11, 245. 10.1146/annurev.iy.11.040193.001333 CASPubMedWeb of Science®Google Scholar Mittrucker, H. W., Pfeffer, K., Schmits, R. & Mak, T. W (1995) T-lymphocyte development and function in gene-targeted mutant mice. Immunol. Rev. 148, 115. 10.1111/j.1600-065X.1995.tb00096.x CASPubMedWeb of Science®Google Scholar Morton, P. A., Fu, X. T., Stewart, J. A., Giacoletto, K. S., White, S. L., Leysath, C. E., Evans, R. J., Shich, J. J. & Karr, R. W (1996) Differentional effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). Immunol. 156, 1047. CASPubMedWeb of Science®Google Scholar Mustelin, T (1994) T cell antigen receptor signaling: three families of tyrosine kinases and a phosphatase. Immunity 1, 351. 10.1016/1074-7613(94)90065-5 CASPubMedWeb of Science®Google Scholar Nel, A. E., Gupta, S., Lee, L., Ledbetter, J. A. & Kanner, S. B. (1995) Ligation of the T cell antigen receptor (TCR) induces association of hSosI, ZAP-70, phospholipase C-gamma I, and other phosphoproteins with Grb2 and the zeta-chain of the TCR. Biol Chem. 270, 18428. 10.1074/jbc.270.31.18428 CASPubMedWeb of Science®Google Scholar Nicola, N. A. (1989) Hematopoietic cell growth factors and their receptors. Annu. Rev. Biochem. 58, 45. 10.1146/annurev.bi.58.070189.000401 CASPubMedWeb of Science®Google Scholar Oaks, M. K., Penwell, R. T. & Tector, A. J. (1996) Nucleotide sequence of the ACI rat CTLA-4 molecule. Immunogenetics 43, 173. 10.1007/BF00176684 CASPubMedWeb of Science®Google Scholar Osman, N., Lucas, S. C., Turner, H. & Cantrell, D. (1995) A comparison of the interaction of She and the tyrosine kinase Zap-70 with the T-cell antigen receptor zeta chain tyro-sine-based activation motif. J. Biol. Chem. 270, 13981. 10.1074/jbc.270.23.13981 CASPubMedWeb of Science®Google Scholar Pages, F., Ragueneau, M., Rottapel, R., Truneh, A., Nunes, I, Imbert, J. & Olive, D. (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327. 10.1038/369327a0 CASPubMedWeb of Science®Google Scholar Park, D. & Rhee, S. G. (1992) Phosphorylation of Nek in response to a variety of receptors, phorbol myristate acetate, and cyclic AMP. Mol Cell Biol 12, 5816. 10.1128/MCB.12.12.5816 CASPubMedWeb of Science®Google Scholar Pawson, T. & Gish, G. D. (1992) SH2 and SH3 domains: from structure to function. Cell 71, 359. 10.1016/0092-8674(92)90504-6 CASPubMedWeb of Science®Google Scholar Pawson, T & Schlessinger, J. (1993) SH2 and SH3 domains.. Curr. Biol 3, 434. 10.1016/0960-9822(93)90350-W CASPubMedWeb of Science®Google Scholar Peach, R. J., Bajorath, J., Brady, W., Leytze, G., Greene, J., Naemura, J. & Linsley, P. S.(1994) Complementarity determining region 1 (CDRl)-and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J. Exp. Med. 180, 2049. 10.1084/jem.180.6.2049 CASPubMedWeb of Science®Google Scholar Peach, R. J., Bajorath, J., Naemura, J., Leytze, G., Greene, J., Aruffo, A. & Linsley, P. S.(1995) Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28, Biol Chem. 270, 21181. 10.1074/jbc.270.36.21181 CASPubMedWeb of Science®Google Scholar Penninger, J., Wallace, V. A., Kishihara, K., Molina, T., Krause, H. & Mak, T. W. (1991) Molecular organization, ontogeny and expression of murine αβ and γδ T cell receptors. Exp. Clin. Immunogenet. 8, 57. CASPubMedWeb of Science®Google Scholar Pfeffer, K. & Mak, TW. (1994) Lymphocyte ontogeny and activation in gene targeted mutant mice. Annu. Rev. Immunol. 12, 367. 10.1146/annurev.iy.12.040194.002055 CASPubMedWeb of Science®Google Scholar Pingel, J. T. & Thomas, M. L, (1989) Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58, 1055. 10.1016/0092-8674(89)90504-7 CASPubMedWeb of Science®Google Scholar Prasad, K. V S., Cai, Y.-C, Raab, M., Duckworth, B., Cantley, L., Shoelson, S. E. & Rudd, C. E. (1994) T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(p)-Met-Xaa-Met motif. Proc. Natl Acad. Sci USA 91, 2834. 10.1073/pnas.91.7.2834 CASPubMedWeb of Science®Google Scholar Quilliam, L. A., Khosravi-Far, R., Huff, S. Y & Der, C. J. (1995) Guanine nucleotide exchange factors activators of the Ras superfamily of proteins. Bioassays 9, 395. 10.1002/bies.950170507 Web of Science®Google Scholar Raab, M., Cai, Y.-C, Gunnel, S. C., Heyeck, S. D, Berg, L. J. & Rudd, C. E. (1995) p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound Grb2, and T cell-specific protein-tyrosine kinase Itk: implications for T-cell costimulation. Proc. Natl. Acad Sci USA 92, 8891. 10.1073/pnas.92.19.8891 CASPubMedWeb of Science®Google Scholar Ramos-Morales, F., Drucker, B. J. & Fischer, S. (1994) Vav binds to several SH2/SH3 containing proteins in activated lymphocytes. Oncogene 9, 1891. PubMedWeb of Science®Google Scholar Ravichandran, K. S., Lorenz, U, Shoelson, S. E. & Burakoff, S. J. (1995) Interaction of She with Grb2 regulates association of Grb2 with mSos. Mol Cell. Biol 15, 593. 10.1128/MCB.15.2.593 CASPubMedWeb of Science®Google Scholar Reedijk, M., Liu, X., van der Geer P., Letwin K., Waterfeild, M. D., Hunter, T & Pawson, T (1992) Tyr721 regulates specific binding of the CSF-2 receptor kinase insert to PI 3′-kinase SH2 domains: a model for SH2-mediated receptor-target interactions. EMBO J. 11, 1365. 10.1002/j.1460-2075.1992.tb05181.x CASPubMedWeb of Science®Google Scholar Rudd, C. E., Trevillyan, J. M., Dasgupta, J. D., Wong, L. L. & Schlossman, S. F. (1988) The CD4-receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc. Natl. Acad. Sci. USA 85, 5190. 10.1073/pnas.85.14.5190 CASPubMedWeb of Science®Google Scholar Schneider, H., Cai, Y.-C, Prasad, K. V S., Shoelson, S. E. & Rudd, C. E. (1995) T cell antigen CD28 binds to the Grb-2/Sos complex, regulators of p21Ras. Eur. J. Immunol 25, 1044. 10.1002/eji.1830250428 CASPubMedWeb of Science®Google Scholar Schneider, H., Prasad, K. V S., Shoelson, S. E. & Rudd, C. E. (1995b) CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med. 181, 351. 10.1084/jem.181.1.351 CASPubMedWeb of Science®Google Scholar Schreiber, S. L. & Crabtree, G. R. (1992) The mechanism of action of cyclosporin A and FK506. Immunol Today 13, 136. 10.1016/0167-5699(92)90111-J CASPubMedWeb of Science®Google Scholar Secrist, J. P, Burns, L. A., Karnitz, L., Koretzky, G. A. & Abraham, R. T (1993) Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem. 268, 5886. 10.1016/S0021-9258(18)53403-7 CASPubMedWeb of Science®Google Scholar Shahinian, A., Pfeffer, K., Lee, K. P, Kundig, T. M., Kishihara, K., Wakeham, A., Kawai, K., Ohashi, P. S., Thompson, C. B. & Mak, T. W. (1993) Differential T cell costimu-latory requirements in CD28-dcficient mice. Science 261, 609. 10.1126/science.7688139 CASPubMedWeb of Science®Google Scholar Shiroo, M., Goff, L., Biffen, M., Shivnan, E. & Alexander, D. (1992) CD45 tyrosine phosphatase- activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. EMBO J. 11, 4887. 10.1002/j.1460-2075.1992.tb05595.x CASPubMedWeb of Science®Google Scholar Sieh, M., Bolen, J. B. & Weiss, A. (1993) CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J. 12, 315. 10.1002/j.1460-2075.1993.tb05659.x CASPubMedWeb of Science®Google Scholar Sieh, M., Batzer, A., Schlessinger, J. & Weiss, A. (1994) Grb2 and phospholipase C-gamma 1 associate with a 36-to 38-kilodalton phosphotyrosine protein after T cell-receptor stimulation. Mol. Cell. Biol. 14, 4435. 10.1128/MCB.14.7.4435 CASPubMedWeb of Science®Google Scholar Smith, K. A. (1988) Interleukin-2; inception, impact and implications. Science 240, 1169. 10.1126/science.3131876 CASPubMedWeb of Science®Google Scholar Songyang, Z., Shoelson, S. E., Chauduri, M., Gish, G., Pawson, T., Haser, W. G., King, E, Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B. & Cantley, L. C (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767. 10.1016/0092-8674(93)90404-E CASPubMedWeb of Science®Google Scholar Stein, P.H., Fraser, J. D. & Weiss, A. (1994) The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol Cell. Biol. 14, 3392. 10.1128/MCB.14.5.3392 CASPubMedWeb of Science®Google Scholar Sun, X. J., Rothenberg, P. Kahn, C. R., Backer, J. M., Araki, E., Wilden, P. A., Cahill, D. A., Goldstein, B. J. & White, M. F. (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73. 10.1038/352073a0 CASPubMedWeb of Science®Google Scholar Taga, T. & Kishimoto, T (1993) Cytokine receptors and signal transduction. FASEB J. 7, 3387. Google Scholar Thomas, M. L. (1995) Of ITAMs and ITIMs: turning on and off the B cell antigen receptor. J. Exp. Med. 181, 1953. 10.1084/jem.181.6.1953 CASPubMedWeb of Science®Google Scholar Tivol, E. A., Borriello, F., Schweitzer, A. N. & Lynch, W. P. (1995) Loss of CrLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative reguJatory role of CTLA-4. Immunity 3, 541. 10.1016/1074-7613(95)90125-6 CASPubMedWeb of Science®Google Scholar Trowbridge, I. S. & Thomas, M. L. (1994) CD45; an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85. 10.1146/annurev.iy.12.040194.000505 CASPubMedWeb of Science®Google Scholar Ullman, K., Northrop, J. P, Verweij, C. L. & Crabtree, G. R. (1990) Transmission of signals from T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function. Annu. Rev. Immunol. 8, 421. 10.1146/annurev.iy.08.040190.002225 CASPubMedWeb of Science®Google Scholar van Oers, N. S. C., Killeen, N. & Weiss, A. (1994) ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR C in murine thymocytes and lymph node T cells. Immunity 1, 675. 10.1016/1074-7613(94)90038-8 CASPubMedWeb of Science®Google Scholar van Oers, N. S. C., Tao, W., Watts, J. D., Johnson, P, Aebersold, R. & The, H. S. (1993) Constitutive tyrosine phosphorylation of the T cell receptor (TCR) C subunit: regulation of TCR-associated protein kinase activity by TCR ζ Mol. Cell. Biol. 13, 5771. 10.1128/MCB.13.9.5771 PubMedWeb of Science®Google Scholar Vyth-Dreese, F.A., Dellemijn, T.A.M., Majoor, D. & Dejong, D. (1995) Localization in situ of the costimulatory molecules B7.1, B7.2, CD40 and their ligands in normal human lymphoid tissue. EUR. J. Immunol. 25, 2023. 10.1002/eji.1830251106 Web of Science®Google Scholar Walunas, T. L., Lenschow, D. J., Bakker, C. Y., Linsley, P. S., Freeman, G. J., Green, J. M., Thompson, C. B. & Bluestone, J. A. (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405. 10.1016/1074-7613(94)90071-X CASPubMedWeb of Science®Google Scholar Wange, R. L., Kong, A.-N. T. & Samelson, L. E. (1992) A tyrosine-phosphorylated 70-kda protein bind a photoaffinity analogue of ATP and associates with both the C CD3 components of the activated T cell antigen receptor. J. Biol. Chem. 267, 11685. CASPubMedWeb of Science®Google Scholar Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314. 10.1038/356314a0 CASPubMedWeb of Science®Google Scholar Waterhouse, P., Penninger, J. M., Timms, E., Wakeham, A., Shahinian, A., Lee, K. P, Thompson, C. B., Griesser, H. & Mak, T. W (1995) Lymphoproiiferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985. 10.1126/science.270.5238.985 CASPubMedWeb of Science®Google Scholar Weaver, C. T. Pingel, J. T. Nelson, J. O. & Thomas, M. L. (1991) CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol. Cell. Biol. 11, 4415. 10.1128/MCB.11.9.4415 CASPubMedWeb of Science®Google Scholar Weiss, A. & Littman, D. R. (1994) Signal transduction by lymphocyte antigen receptor. Cell 76, 263. 10.1016/0092-8674(94)90334-4 CASPubMedWeb of Science®Google Scholar Weiss, A., Koretzky, G., Schatzman, R. C. & Kadlecek, T. (1991) Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phosphoiipase Cyl Proc. Natl. Acad Sci. USA 88, 5484. 10.1073/pnas.88.13.5484 CASPubMedWeb of Science®Google Scholar Wu, J., Katsav, A. & Weiss, A. (1995) A functional T-cell receptor signaling pathway is required for p95Vav activity. Mol. Cell. Biol. 15, 4337. 10.1128/MCB.15.8.4337 CASPubMedWeb of Science®Google Scholar Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W. & Schreiber, S. L. (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933. 10.1016/0092-8674(94)90367-0 CASPubMedWeb of Science®Google Scholar Citing Literature Volume153, Issue1October 1996Pages 183-207 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX