Contributions to the Theory of Generalized Inverses

1963; Society for Industrial and Applied Mathematics; Volume: 11; Issue: 3 Linguagem: Inglês

10.1137/0111051

ISSN

2168-3484

Autores

Adi Ben-Israel, A. Charnes,

Tópico(s)

Scientific Research and Discoveries

Resumo

Previous article Next article Contributions to the Theory of Generalized InversesA. Ben-Israel and A. CharnesA. Ben-Israel and A. Charneshttps://doi.org/10.1137/0111051PDFPDF PLUSBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] M. Altman, Approximation methods in functional analysis, Lecture Notes Ma 107C, California Institute of Technology, 1959 Google Scholar[2] A. Ben-Israel and , A. Charnes, Projection properties and Neumann-Euler expansions for the Moore-Penrose inverse of an arbitrary matrix, ONR Research Memo., 40, Northwestern University, The Technological Institute, Evanston, Illinois, 1961 Google Scholar[3] A. Ben-Israel and , A. Charnes, Generalized inverses and the Bott-Duffin network analysis, ONR Research Memo., 66, Northwestern University, The Technological Institute, Evanston, Illinois, 1962 Google Scholar[4] A. Ben-Israel and , S. J. Wersan, A least squares method for computing the generalized inverse of an arbitrary matrix, ONR Research Memo., 61, Northwestern University, The Technological Institute, Evanston, Illinois, 1962 Google Scholar[5] Arne Bjerhammar, Application of calculus of matrices to method of least squares with special reference to geodetic calculations, Trans. Roy. Inst. Tech. Stockholm, 1951 (1951), 86 pp. (2 plates) MR0055793 0043.12203 Google Scholar[6] Arne Bjerhammar, Rectangular reciprocal matrices, with special reference to geodetic calculations, Bull. Géodésique, 1951 (1951), 188–220 MR0043758 CrossrefGoogle Scholar[7] Arne Bjerhammar, A generalized matrix algebra, Kungl. Tekn. Högsk. Handl. no., 124 (1958), 32– MR0100608 Google Scholar[8] R. Bott and , R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc., 74 (1953), 99–109 MR0056573 0050.25104 CrossrefISIGoogle Scholar[9] A. Charnes, , W. W. Cooper and , G. L. Thompson, Constrained generalized medians and linear programming under uncertainty, ONR Research Memo, 41, Northwestern University, The Technological Institute, Evanston, Illinois, 1961, and Carnegie Institute of Technology, Pittsburgh, Pa. Google Scholar[10] R. E. Cline, On the computation of the generalized inverse A+, of an arbitrary matrix A, and the use of certain associated eigenvectors in solvingthe allocation problem, Preliminary Report, Statistical and Computing Laboratory, Purdue University, Lafayette, Indiana, 1958 Google Scholar[11] G. G. Den Broeder, Jr. and , A. Charnes, Contributions to the theory of a generalized inverse for matrices, ONR Research Memo, 39, Purdue University, Lafayette, Indiana, 1957, (Northwestern University, The Technological Institute, Evanston, IUinois), (1962) Google Scholar[12] Benjamin A. Dent and , Albert Newhouse, Polynomials orthogonal over discrete domains, SIAM Rev., 1 (1959), 55–59 10.1137/1001008 MR0100340 0123.33003 LinkGoogle Scholar[13] M. P. Drazin, Pseudo inverses in associative rings and semigroups, Amer. Math. Monthly, 65 (1958), 506–514 MR0098762 0083.02901 CrossrefGoogle Scholar[14] Nelson Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc., 54 (1943), 185–217 MR0008642 0063.01185 Google Scholar[15] Nelson Dunford and , Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York, 1958xiv+858 MR0117523 0084.10402 Google Scholar[16] V. N. Faddeeva, Computational methods of linear algebra, Dover Publications Inc., New York, 1959xi+252 MR0100344 0086.10802 Google Scholar[17] L. Fantappie, Le calcul des matrices, C.R. Acad. Sci. Paris, 186 (1928), 619–621 Google Scholar[18] J. J. Florentine, Optimal control of continuous time, Markov, stochastic systems, J. Electronics Control, 10 (1961), 473–488 Google Scholar[19] T. N. E. Greville, The pseudo inverse of a rectangular or singular matrix and its application to the solution of systems of linear equations, SIAM Rev., 1 (1959), 38–43 10.1137/1001003 MR0101615 0123.11202 LinkISIGoogle Scholar[20] T. N. E. Greville, Some applications of the pseudo inverse of a matrix, SIAM Rev., 2 (1960), 15–22 10.1137/1002004 0168.13303 LinkISIGoogle Scholar[21] Magnus R. Hestenes, Inversion of matrices by biorthogonalization and related results, J. Soc. Indust. Appl. Math., 6 (1958), 51–90 10.1137/0106005 MR0092215 0085.33003 LinkISIGoogle Scholar[22] Magnus R. Hestenes, Relative hermitian matrices, Pacific J. Math., 11 (1961), 225–245 MR0137723 0109.24702 CrossrefGoogle Scholar[23] Einar Hille and , Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957xii+808 MR0089373 0392.46001 Google Scholar[24] R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana (2), 5 (1960), 102–119 MR0127472 0112.06303 Google Scholar[25] R. E. Kalman, New methods and results in linear prediction and filtering theory, Technical Report, 61-1 RIAS, Baltimore, Md., 1961 Google Scholar[26] A. T. Lonseth, Approximate solutions of Fredholm-type integral equations, Bull. Amer. Math. Soc., 60 (1954), 415–430 MR0064497 0056.10003 CrossrefISIGoogle Scholar[27] C. C. Macduffee, The Theory of Matrices, Springer Verlag, Berlin, 1933 0007.19507 CrossrefGoogle Scholar[28] Neal H. McCoy, Rings and ideals, Carus Monograph Series, no. 8, The Open Court Publishing Company, LaSalle, Ill., 1948xii+216 MR0026038 0041.36406 Google Scholar[29] E. H. Moore, Rings and ideals, Bull. Amer. Math. Soc., 26 (1920), 394–395 Google Scholar[30] E. H. Moore, General Analysis, Part I, Mem. Amer. Philos. Soc., I (1935), Google Scholar[31] W. D. Munn and , R. Penrose, A note on inverse semigroups, Proc. Cambridge Philos. Soc., 51 (1955), 396–399 MR0070629 0064.25101 CrossrefGoogle Scholar[32] F. J. Murray and , J. Von Neumann, On rings of operators, Ann. of Math. (2), 37 (1936), 116–229 MR1503275 0014.16101 CrossrefGoogle Scholar[33] M. A. Nai˘mark, Normed rings, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff N. V., Groningen, 1959xvi+560 MR0110956 0089.10102 Google Scholar[34] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406–413 MR0069793 0065.24603 CrossrefGoogle Scholar[35] R. Penrose, On best approximation solutions of linear matrix equations, Proc. Cambridge Philos. Soc., 52 (1956), 17–19 MR0074092 0070.12501 CrossrefGoogle Scholar[36] L. D. Pyle, A gradient projection method for solving programming problems using the generalized inverse A+ and the eigenvectors e(1),⋯,e(n) of I−A+A, Preliminary Report, Statistical and Computing Laboratory, Purdue University, Lafayette, Indiana, 1958 Google Scholar[37] R. Rado, Note on generalized inverses of matrices, Proc. Cambridge Philos. Soc., 52 (1956), 600–601 MR0081255 0071.24702 CrossrefGoogle Scholar[38] Frigyes Riesz and , Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955xii+468 MR0071727 Google Scholar[39] Frederick Riesz and , E. R. Lorch, The integral representation of unbounded self-adjoint transformations in Hilbert space, Trans. Amer. Math. Soc., 39 (1936), 331–340 MR1501850 0013.40504 CrossrefGoogle Scholar[40] R. F. Rinehart, The equivalence of definitions of a matric function, Amer. Math. Monthly, 62 (1955), 395–414 MR0069908 0065.07003 CrossrefGoogle Scholar[41] J. B. Rosen, The gradient projection method for nonlinear programming. I. Linear constraints, J. Soc. Indust. Appl. Math., 8 (1960), 181–217 10.1137/0108011 MR0112750 0099.36405 LinkISIGoogle Scholar[42] J. B. Rosen, The gradient projection method for nonlinear programming. II. Nonlinear constraints, J. Soc. Indust. Appl. Math., 9 (1961), 514–532 10.1137/0109044 MR0135991 0231.90048 LinkISIGoogle Scholar[43] H. Schwerdtfeger, Les Fonctions de Matrices, Actualites Sci. Ind., Paris, 1938 0022.24003 Google Scholar[44] Yu. Ya. Tseng, Ph.D. Thesis, The characteristic value problem of Hermitian functional operators in a non-Hilbertian space, University of Chicago, 1933, (A private edition was published by the University of Chicago Libraries, 1936) Google Scholar[45] Yuan-Yung Tseng, Sur les solutions des équations opératrices fonctionnelles entre les espaces unitaires. Solutions extrémales. Solutions virtuelles, C. R. Acad. Sci. Paris, 228 (1949), 640–641 MR0029479 0034.37302 Google Scholar[46] Ya. Yu. Tseng, Generalized inverses of unbounded operators between two unitary spaces, Doklady Akad. Nauk SSSR (N.S.), 67 (1949), 431–434 MR0031191 0040.06201 Google Scholar[47] Ya. Yu. Tseng, Properties and classification of generalized inverses of closed operators, Doklady Akad. Nauk SSSR (N.S.), 67 (1949), 607–610 MR0031192 Google Scholar[48] Ya. Yu. Tseng, Virtual solutions and general inversions, Uspehi Mat. Nauk (N.S.), 11 (1956), 213–215 MR0083710 0073.09602 Google Scholar[49] J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. (2), 33 (1932), 294–310 MR1503053 0004.21603 CrossrefGoogle Scholar[50] J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A., 22 (1936), 707–713 0015.38802 CrossrefGoogle Scholar[51] John von Neumann, Continuous geometry, Foreword by Israel Halperin. Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960xi+299 MR0120174 0171.28003 Google Scholar[52] John von Neumann, Functional Operators. II. The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, no. 22, Princeton University Press, Princeton, N. J., 1950iii+107 MR0034514 0039.11701 Google Scholar[53] J. H. M. Wedderburn, Lectures on Matrices, Vol. XVIII, Amer. Math. Soc. Colloq. Publications, New York, 1934 CrossrefGoogle Scholar[54] J. W. Gibbs, Collected Works, Vol. II, Yale University Press, New Haven, 1931, 61–65, part 2 Google Scholar[55] F. L. Hitchcock, A solution of the linear matrix equation by double multiplication, Proc. Nat. Acad. Sci., 8 (1922), 78–83 CrossrefGoogle Scholar[56] J. H. M. Wedderburn, The absolute value of the product of two matrices, Bull. Amer. Math. Soc., 31 (1925), 304–308 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails A Note on Restricted PseudoinversesSIAM Journal on Mathematical Analysis, Vol. 10, No. 2 | 17 February 2012AbstractPDF (486 KB)Approximations to Generalized Inverses of Linear OperatorsSIAM Journal on Applied Mathematics, Vol. 27, No. 1 | 12 July 2006AbstractPDF (1415 KB)Cones and Iterative Methods for Best Least Squares Solutions of Linear SystemsSIAM Journal on Numerical Analysis, Vol. 11, No. 1 | 14 July 2006AbstractPDF (828 KB)On the Convergence of the Conjugate Gradient Method for Singular Linear Operator EquationsSIAM Journal on Numerical Analysis, Vol. 9, No. 1 | 1 August 2006AbstractPDF (1764 KB)Shorted OperatorsSIAM Journal on Applied Mathematics, Vol. 20, No. 3 | 12 July 2006AbstractPDF (454 KB)A Hyperpower Iterative Method for Computing Matrix Products Involving the Generalized InverseSIAM Journal on Numerical Analysis, Vol. 8, No. 1 | 14 July 2006AbstractPDF (529 KB)A Note on the Generalized Inverses of Some Partitioned MatricesSIAM Journal on Applied Mathematics, Vol. 19, No. 3 | 12 July 2006AbstractPDF (292 KB)Steepest Descent for Singular Linear Operator EquationsSIAM Journal on Numerical Analysis, Vol. 7, No. 3 | 14 July 2006AbstractPDF (432 KB)A Restricted Pseudoinverse and Its Application to Constrained MinimaSIAM Journal on Applied Mathematics, Vol. 19, No. 1 | 12 July 2006AbstractPDF (910 KB)Some Examples of Generalized Green's Functions and Generalized Green's MatricesSIAM Review, Vol. 12, No. 2 | 18 July 2006AbstractPDF (1401 KB)Remarks on a Paper of Ben-IsraelSIAM Journal on Applied Mathematics, Vol. 18, No. 2 | 1 August 2006AbstractPDF (199 KB)On Matrices of Index Zero or OneSIAM Journal on Applied Mathematics, Vol. 17, No. 6 | 17 February 2012AbstractPDF (254 KB)On Some Representations of Generalized InversesSIAM Review, Vol. 11, No. 2 | 18 July 2006AbstractPDF (278 KB)A Note on Partitioned Matrices and EquationsSIAM Review, Vol. 11, No. 2 | 18 July 2006AbstractPDF (228 KB)Conditions for Positive and Nonnegative Definiteness in Terms of PseudoinversesSIAM Journal on Applied Mathematics, Vol. 17, No. 2 | 12 July 2006AbstractPDF (399 KB)On the Continuity of the Generalized InverseSIAM Journal on Applied Mathematics, Vol. 17, No. 1 | 28 July 2006AbstractPDF (736 KB)An Oblique Matrix PseudoinverseSIAM Journal on Applied Mathematics, Vol. 16, No. 5 | 28 July 2006AbstractPDF (1207 KB)A Note on Generalized Interpolation and the PseudoinverseSIAM Journal on Numerical Analysis, Vol. 4, No. 4 | 14 July 2006AbstractPDF (721 KB)On Generalized Inverses of MatricesSIAM Journal on Applied Mathematics, Vol. 15, No. 5 | 13 July 2006AbstractPDF (821 KB)On the Geometry of Subspaces in Euclidean n-SpacesSIAM Journal on Applied Mathematics, Vol. 15, No. 5 | 13 July 2006AbstractPDF (964 KB)Two Algorithms Related to the Method of Steepest DescentSIAM Journal on Numerical Analysis, Vol. 4, No. 1 | 14 July 2006AbstractPDF (798 KB)On Construction and Properties of the Generalized InverseSIAM Journal on Applied Mathematics, Vol. 15, No. 2 | 13 July 2006AbstractPDF (355 KB)On Error Bounds for Generalized InversesSIAM Journal on Numerical Analysis, Vol. 3, No. 4 | 14 July 2006AbstractPDF (495 KB)On Iterative Computation of Generalized Inverses and Associated ProjectionsSIAM Journal on Numerical Analysis, Vol. 3, No. 3 | 14 July 2006AbstractPDF (620 KB)An Alternate Definition of a Pseudoinverse of a MatrixSIAM Journal on Applied Mathematics, Vol. 14, No. 4 | 3 August 2006AbstractPDF (1383 KB)On Partial Isometries in Finite-Dimensional Euclidean SpacesSIAM Journal on Applied Mathematics, Vol. 14, No. 3 | 28 July 2006AbstractPDF (994 KB)Generalized Inverses and Generalized Green's FunctionsSIAM Journal on Applied Mathematics, Vol. 14, No. 2 | 13 July 2006AbstractPDF (1760 KB)An Application of the Cayley-Hamilton Theorem to Generalized Matrix InversionSIAM Review, Vol. 7, No. 4 | 18 July 2006AbstractPDF (223 KB)On the Generalized Inverse of an Incidence MatrixYuji IjiriJournal of the Society for Industrial and Applied Mathematics, Vol. 13, No. 3 | 13 July 2006AbstractPDF (781 KB)A Method for Computing Least Squares Estimators that Keep Up with the DataJournal of the Society for Industrial and Applied Mathematics Series A Control, Vol. 3, No. 3 | 18 July 2006AbstractPDF (2356 KB)Calculating the Singular Values and Pseudo-Inverse of a MatrixJournal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, Vol. 2, No. 2 | 14 July 2006AbstractPDF (1596 KB)Representations for the Generalized Inverse of a Partitioned MatrixRandall E. ClineJournal of the Society for Industrial and Applied Mathematics, Vol. 12, No. 3 | 13 July 2006AbstractPDF (1039 KB) Volume 11, Issue 3| 1963Journal of the Society for Industrial and Applied Mathematics History Submitted:10 May 1962Accepted:14 January 1963Published online:13 July 2006 InformationCopyright © 1963 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0111051Article page range:pp. 667-699ISSN (print):0368-4245ISSN (online):2168-3484Publisher:Society for Industrial and Applied Mathematics

Referência(s)