Artigo Acesso aberto Revisado por pares

Identification of a Novel Membrane Transporter Associated with Intracellular Membranes by Phenotypic Complementation in the Yeast Saccharomyces cerevisiae

1996; Elsevier BV; Volume: 271; Issue: 16 Linguagem: Inglês

10.1074/jbc.271.16.9801

ISSN

1083-351X

Autores

Douglas L. Hogue, Michael J. Ellison, James D. Young, Carol E. Cass,

Tópico(s)

Biotin and Related Studies

Resumo

A partial mouse cDNA was isolated by its ability to functionally complement a thymidine transport deficiency in plasma membranes of the yeast, Saccharomyces cerevisiae. The full-length cDNA encoded a previously unidentified 27-kDa protein (mouse transporter protein (MTP)) with four predicted transmembrane-spanning domains. MTP mRNA was detected in cells of several mammalian species, and its predicted protein sequence exhibited near identity (98%) with that of a human cDNA (HUMORF13). MTP and its homologs evidently reside in an intracellular membrane compartment because a protein (about 24 kDa) that was recognized by MTP-specific antibodies was observed in a subcellular fraction of rat hepatocytes enriched for Golgi membranes. Deletion of the hydrophilic C terminus of MTP, which encompassed two putative signal motifs for intracellular localization (Tyr-X-X-hydrophobic amino acid), allowed expression of recombinant protein (MTPΔC) in plasma membranes of Xenopus laevis oocytes. MTPΔC-expressing oocytes exhibited greater fragility than nonexpressing oocytes, and those that survived the experimental manipulations were capable of mediated uptake of thymidine, uridine, and adenosine. Thymidine uptake by MTPΔC-expressing oocytes was inhibited by thymine and dTMP. MTP may function in the transport of nucleosides and/or nucleoside derivatives between the cytosol and the lumen of an intracellular membrane-bound compartment. A partial mouse cDNA was isolated by its ability to functionally complement a thymidine transport deficiency in plasma membranes of the yeast, Saccharomyces cerevisiae. The full-length cDNA encoded a previously unidentified 27-kDa protein (mouse transporter protein (MTP)) with four predicted transmembrane-spanning domains. MTP mRNA was detected in cells of several mammalian species, and its predicted protein sequence exhibited near identity (98%) with that of a human cDNA (HUMORF13). MTP and its homologs evidently reside in an intracellular membrane compartment because a protein (about 24 kDa) that was recognized by MTP-specific antibodies was observed in a subcellular fraction of rat hepatocytes enriched for Golgi membranes. Deletion of the hydrophilic C terminus of MTP, which encompassed two putative signal motifs for intracellular localization (Tyr-X-X-hydrophobic amino acid), allowed expression of recombinant protein (MTPΔC) in plasma membranes of Xenopus laevis oocytes. MTPΔC-expressing oocytes exhibited greater fragility than nonexpressing oocytes, and those that survived the experimental manipulations were capable of mediated uptake of thymidine, uridine, and adenosine. Thymidine uptake by MTPΔC-expressing oocytes was inhibited by thymine and dTMP. MTP may function in the transport of nucleosides and/or nucleoside derivatives between the cytosol and the lumen of an intracellular membrane-bound compartment.

Referência(s)