On the Coulomb-Mohr failure criterion
1969; American Geophysical Union; Volume: 74; Issue: 22 Linguagem: Inglês
10.1029/jb074i022p05343
ISSN2156-2202
Autores Tópico(s)Rock Mechanics and Modeling
ResumoJournal of Geophysical Research (1896-1977)Volume 74, Issue 22 p. 5343-5348 Brief Reports: On the Coulomb-Mohr failure criterion John Handin, John HandinSearch for more papers by this author John Handin, John HandinSearch for more papers by this author First published: 15 October 1969 https://doi.org/10.1029/JB074i022p05343Citations: 219AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Coulomb's criterion for the shear fracture of a brittle material is that total shearing resistance is the sum of the cohesive shear strength (independent of direction) and the product of the effective normal stress and the coefficient of internal friction (a constant independent of normal stress). Mohr generalized this criterion by extending it to a three-dimensional state of stress, and by allowing for a variable coefficient. The coefficients of internal and external (sliding) friction are not the same in general. Both tend to decrease with increasing normal stress, and their relative magnitudes may determine if failure occurs by new shear fracturing or by slip on pre-existing cohesionless surfaces like joints in rocks. References Anderson, E. M., The Dynamics of Faulting, Oliver and Boyd, London, 1942. Byerlee, J. D., Frictional characteristics of granite under high confining pressure, J. Geophys. Res., 72, 3639– 3648, 1967a. Byerlee, J. D., Theory of friction based on brittle fracture, J. Appl. Phys., 33, 2928– 2934, 1967b. Byerlee, J. D., Brittle-ductile transition in rocks, J. Geophys. Res., 73, 4741– 4750, 1968. Coulomb, C. A., Sur une application des règles maximis et minimis a quelques problèmes de statique, relatifs à l'architecture, Acad. Sci. Paris Mem. Math. Phys., 7, 343– 382, 1776. Handin, J., R. V. Hager, Experimental deformation of sedimentary rocks under confining pressure: Tests at room temperature on dry samples, Bull. Am. Assoc. Petrol. Geologists, 41, 1– 50, 1957. Handin, J., H. C. Heard, J. N. Magouirk, Effects of the intermediate principal stress on the failure of limestone, dolomite, and glass at different temperatures and strain rates, J. Geophys. Res., 72, 611– 640, 1967. Handin, J., D. W. Stearns, Sliding friction of rock (abstract), Trans. Am. Geophys. Union, 45, 103, 1964. Jaeger, J. C., The frictional properties of joints in rocks, Geofis. Pura Appl., 43, 148– 158, 1959. Jaeger, J. C., Elasticity, Fracture, and Flow, Methuen, London, 1962. Jaeger, J. C., N. G. W. Cook, Fundamentals of Rock Mechanics, Methuen, London, 1969. Jeffreys, H., The Earth, Cambridge University Press, 1952. Maurer, W. C., Shear failure of rock under compression, Soc. Petrol. Engrs. J., 5, 167– 176, 1985. McKenzie, D. P., The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Seismol. Soc. Am., 59, 591– 601, 1969. Mogi, K., Effect of the intermediate principal stress on rock failure, J. Geophys. Res., 72, 5117– 5131, 1967. Mohr, O., Ueber die Darstellung des Spannungzustandes eines Körperelementes, Civiling., 28, 113– 156, 1882. Mohr, O., Welche Umstande bedingen die Elastizitättsgrenze und den Bruch eines Materiales?, Zeits. Ver deutsch. Ing., 44, 1524– 15301572–1577, 1900. Navier, M., Résumé des Leçons, Part 1, CarilianGoeury, Paris, 1833. Rankine, W. J. M., On the stability of loose earth, Roy. Soc. London Phil. Trans., Part 1, 147, 9– 27, 1857. Citing Literature Volume74, Issue2215 October 1969Pages 5343-5348 ReferencesRelatedInformation
Referência(s)