Behavior of Mixed Populations and the Problem of Natural Selection
1935; University of Chicago Press; Volume: 69; Issue: 725 Linguagem: Inglês
10.1086/280628
ISSN1537-5323
Autores Tópico(s)Ecology and Vegetation Dynamics Studies
ResumoPrevious articleNext article No AccessBehavior of Mixed Populations and the Problem of Natural SelectionG. F. Gause, and A. A. WittG. F. Gause Search for more articles by this author , and A. A. Witt Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 69, Number 725Nov. - Dec., 1935 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/280628 Views: 65Total views on this site Citations: 165Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Naoto K. Inoue Quantitative evaluation of the effects of bycatch on native species using mathematical models, Ecological Modelling 474 (Dec 2022): 110153.https://doi.org/10.1016/j.ecolmodel.2022.110153Kayla R. S. Hale, Daniel P. Maes, and Fernanda S. Valdovinos Simple Mechanisms of Plant Reproductive Benefits Yield Different Dynamics in Pollination and Seed Dispersal Mutualisms, The American Naturalist 200, no.22 (Jun 2022): 202–216.https://doi.org/10.1086/720204Veronica Hsu, Ferdinand Pfab, Holly V. Moeller Niche expansion via acquired metabolism facilitates competitive dominance in planktonic communities, Ecology 103, no.77 (May 2022).https://doi.org/10.1002/ecy.3693Antoine C. Dussault Does the study of facilitation require a revision of the Hutchinsonian niche concept?, Biology & Philosophy 37, no.22 (Apr 2022).https://doi.org/10.1007/s10539-022-09844-3Mark A. McPeek, Sarah J. McPeek, Judith L. Bronstein Nectar dynamics and the coexistence of two plants that share a pollinator, Oikos 2022, no.44 (Jan 2022).https://doi.org/10.1111/oik.08869Audrey R. Freischel, Mehdi Damaghi, Jessica J. Cunningham, Arig Ibrahim-Hashim, Robert J. Gillies, Robert A. Gatenby, Joel S. Brown Frequency-dependent interactions determine outcome of competition between two breast cancer cell lines, Scientific Reports 11, no.11 (Mar 2021).https://doi.org/10.1038/s41598-021-84406-3Jiani Chen, Gangqi Fang, Lan Pang, Yifeng Sheng, Qichao Zhang, Yuenan Zhou, Sicong Zhou, Yueqi Lu, Zhiguo Liu, Yixiang Zhang, Guiyun Li, Min Shi, Xuexin Chen, Shuai Zhan, Jianhua Huang Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour, Nature Communications 12, no.11 (Sep 2021).https://doi.org/10.1038/s41467-021-25727-9Kayla R. S. Hale, Fernanda S. Valdovinos Ecological theory of mutualism: Robust patterns of stability and thresholds in two‐species population models, Ecology and Evolution 11, no.2424 (Dec 2021): 17651–17671.https://doi.org/10.1002/ece3.8453Lara Dutra Silva, Rui Bento Elias, Luís Silva Modelling invasive alien plant distribution: A literature review of concepts and bibliometric analysis, Environmental Modelling & Software 145 (Nov 2021): 105203.https://doi.org/10.1016/j.envsoft.2021.105203Tomás A. Revilla, Thomas Marcou, Vlastimil Křivan Plant competition under simultaneous adaptation by herbivores and pollinators, Ecological Modelling 455 (Sep 2021): 109634.https://doi.org/10.1016/j.ecolmodel.2021.109634Lev V. Kalmykov, Vyacheslav L. Kalmykov A solution to the dilemma `limiting similarity vs. limiting dissimilarity' by a method of transparent artificial intelligence, Chaos, Solitons & Fractals 146 (May 2021): 110814.https://doi.org/10.1016/j.chaos.2021.110814Fernanda S. Valdovinos and Robert Marsland III Niche Theory for Mutualism: A Graphical Approach to Plant-Pollinator Network Dynamics, The American Naturalist 197, no.44 (Feb 2021): 393–404.https://doi.org/10.1086/712831Murtala Bello Aliyu, Mohd Hafiz Mohd Combined Impacts of Predation, Mutualism and Dispersal on the Dynamics of a Four-Species Ecological System, Pertanika Journal of Science and Technology 29, no.11 (Jan 2021).https://doi.org/10.47836/pjst.29.1.13Athmanathan Senthilnathan and Sergey Gavrilets Ecological Consequences of Intraspecific Variation in Coevolutionary Systems, The American Naturalist 197, no.11 (Dec 2020): 1–17.https://doi.org/10.1086/711886Mario E. Muscarella, James P. O’Dwyer Species dynamics and interactions via metabolically informed consumer-resource models, Theoretical Ecology 13, no.44 (Jul 2020): 503–518.https://doi.org/10.1007/s12080-020-00466-7Maria M. Martignoni, Miranda M. Hart, Jimmy Garnier, Rebecca C. Tyson Parasitism within mutualist guilds explains the maintenance of diversity in multi-species mutualisms, Theoretical Ecology 13, no.44 (Jul 2020): 615–627.https://doi.org/10.1007/s12080-020-00472-9Gerald W. Tannock, Yafei Liu Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota, Journal of the Royal Society of New Zealand 50, no.33 (Aug 2019): 434–455.https://doi.org/10.1080/03036758.2019.1657471Robert Marsland, Wenping Cui, Joshua Goldford, Pankaj Mehta, Isaac Klapper The Community Simulator: A Python package for microbial ecology, PLOS ONE 15, no.33 (Mar 2020): e0230430.https://doi.org/10.1371/journal.pone.0230430Saikat Batabyal, Debaldev Jana, Jingjing Lyu, Rana D. Parshad Explosive predator and mutualistic preys: A comparative study, Physica A: Statistical Mechanics and its Applications 541 (Mar 2020): 123348.https://doi.org/10.1016/j.physa.2019.123348Alisa Aliaga‐Samanez, Raimundo Real, Jan Vermeer, Jesús Olivero, Thomas Webb Modelling species distributions limited by geographical barriers: A case study with African and American primates, Global Ecology and Biogeography 29, no.33 (Dec 2019): 444–453.https://doi.org/10.1111/geb.13041J. David Van Dyken Evolutionary Rescue from a Wave of Biological Invasion, The American Naturalist 195, no.11 (Nov 2019): 115–128.https://doi.org/10.1086/706181Anton Pauw A Bird's-Eye View of Pollination: Biotic Interactions as Drivers of Adaptation and Community Change, Annual Review of Ecology, Evolution, and Systematics 50, no.11 (Nov 2019): 477–502.https://doi.org/10.1146/annurev-ecolsys-110218-024845Raphaël Trouvé, Craig R. Nitschke, Loic Andrieux, Tim Willersdorf, Andrew P. Robinson, Patrick J. Baker Competition drives the decline of a dominant midstorey tree species. Habitat implications for an endangered marsupial, Forest Ecology and Management 447 (Sep 2019): 26–34.https://doi.org/10.1016/j.foreco.2019.05.055Robert Marsland, Wenping Cui, Joshua Goldford, Alvaro Sanchez, Kirill Korolev, Pankaj Mehta, Alexandre V. Morozov Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities, PLOS Computational Biology 15, no.22 (Feb 2019): e1006793.https://doi.org/10.1371/journal.pcbi.1006793Paul Georgescu, Daniel Maxin, Laurentiu Sega, Hong Zhang Mathematical Modeling of Multispecies Mutualism: From Particular Models Toward a Generalization of the Concept, (Jan 2019): 85–130.https://doi.org/10.1016/bs.host.2018.09.001Stephen P. Ellner, Robin E. Snyder, Peter B. Adler, Giles Hooker, Jessica Metcalf , Ecology Letters 22, no.11 ( 2019): 3.https://doi.org/10.1111/ele.13159James P. O’Dwyer Whence Lotka-Volterra?, Theoretical Ecology 11, no.44 (Apr 2018): 441–452.https://doi.org/10.1007/s12080-018-0377-0David W. Shanafelt, Michel Loreau Stability trophic cascades in food chains, Royal Society Open Science 5, no.1111 (Nov 2018): 180995.https://doi.org/10.1098/rsos.180995Kristina K Prescott, David A Andow Co-occurrence Among Intraguild Predators: Avoidance or Aggregation?, Environmental Entomology 47, no.33 (Mar 2018): 559–566.https://doi.org/10.1093/ee/nvy016Tomás A. Revilla, Vlastimil Křivan Competition, trait–mediated facilitation, and the structure of plant–pollinator communities, Journal of Theoretical Biology 440 (Mar 2018): 42–57.https://doi.org/10.1016/j.jtbi.2017.12.019Christopher M. Moore, Samantha A. Catella, Karen C. Abbott Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback, Ecological Modelling 368 (Jan 2018): 191–197.https://doi.org/10.1016/j.ecolmodel.2017.11.016A. Alzate, K. Bisschop, R. S. Etienne, D. Bonte Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host, Journal of Evolutionary Biology 30, no.1111 (Jun 2017): 1966–1977.https://doi.org/10.1111/jeb.13123Zhongyu Sun, Yuhui Huang, Long Yang, Val Schaefer, Yanqiao Chen Plantation age, understory vegetation, and species-specific traits of target seedlings alter the competition and facilitation role of Eucalyptus in South China, Restoration Ecology 25, no.55 (Jan 2017): 749–758.https://doi.org/10.1111/rec.12499Teresa J. Clark, Colleen A. Friel, Emily Grman, Yair Shachar‐Hill, Maren L. Friesen, Minus van Baalen Modelling nutritional mutualisms: challenges and opportunities for data integration, Ecology Letters 20, no.99 (Jul 2017): 1203–1215.https://doi.org/10.1111/ele.12810Battle Karimi, Pierre Alain Maron, Nicolas Chemidlin-Prevost Boure, Nadine Bernard, Daniel Gilbert, Lionel Ranjard Microbial diversity and ecological networks as indicators of environmental quality, Environmental Chemistry Letters 15, no.22 (Mar 2017): 265–281.https://doi.org/10.1007/s10311-017-0614-6Paul A. Keddy Plant Ecology, 55 (Jan 2021).https://doi.org/10.1017/9781316321270Ferdinand Pfab, Odo Diekmann, Souvik Bhattacharya, Andrea Pugliese Multiple coexistence equilibria in a two parasitoid-one host model, Theoretical Population Biology 113 (Feb 2017): 34–46.https://doi.org/10.1016/j.tpb.2016.10.002Jean-Marc Ginoux The Great War and the First Triode Designs: Abraham, Bloch, Blondel, Van der Pol, (Apr 2017): 39–65.https://doi.org/10.1007/978-3-319-55239-2_2Jean-Marc Ginoux From the Series-Dynamo Machine to the Singing Arc: Gérard-Lescuyer, Blondel, Poincaré, (Apr 2017): 3–37.https://doi.org/10.1007/978-3-319-55239-2_1Jean-Marc Ginoux Response to Van der Pol’s and Andronov’s Work in France, (Apr 2017): 145–163.https://doi.org/10.1007/978-3-319-55239-2_6Jean-Marc Ginoux Andronov’s Notes: Toward the Concept of Self-Oscillations, (Apr 2017): 131–144.https://doi.org/10.1007/978-3-319-55239-2_5Jean-Marc Ginoux Van der Pol’s Lectures: Towards the Concept of Relaxation Oscillations, (Apr 2017): 109–130.https://doi.org/10.1007/978-3-319-55239-2_4Jean-Marc Ginoux Van der Pol’s Prototype Equation: Existence and Uniqueness of the Periodic Solution Cartan, Van der Pol, Liénard, (Apr 2017): 67–101.https://doi.org/10.1007/978-3-319-55239-2_3Jean-Marc Ginoux The Krylov-Bogolyubov Method: Towards a Nonlinear Mechanics, (Apr 2017): 291–304.https://doi.org/10.1007/978-3-319-55239-2_11Jean-Marc Ginoux Van der Pol’s Method: A Simple and Classic Solution, (Apr 2017): 275–289.https://doi.org/10.1007/978-3-319-55239-2_10Jean-Marc Ginoux The Poincaré-Lindstedt Method: The Incompatibility with Radio Engineering, (Apr 2017): 265–273.https://doi.org/10.1007/978-3-319-55239-2_9Jean-Marc Ginoux The Paradigm of Relaxation Oscillations in France, (Apr 2017): 177–255.https://doi.org/10.1007/978-3-319-55239-2_8Jean-Marc Ginoux The First International Conference on Nonlinear Processes: Paris 1933, (Apr 2017): 165–176.https://doi.org/10.1007/978-3-319-55239-2_7Jean-Marc Ginoux Hadamard and His Seminary: At the Crossroads of Ideas and Theories, (Apr 2017): 331–338.https://doi.org/10.1007/978-3-319-55239-2_14Jean-Marc Ginoux From Quasi-periodic Functions to Recurrent Motions, (Apr 2017): 311–330.https://doi.org/10.1007/978-3-319-55239-2_13Jean-Marc Ginoux The Mandel’shtam-Papalexi School: The “Van der Pol-Poincaré” Method, (Apr 2017): 305–310.https://doi.org/10.1007/978-3-319-55239-2_12 A Sense of Community, (Dec 2016): 19–38.https://doi.org/10.1002/9781118801413.ch3Guy Larocque, Herman Shugart, Weimin Xi, Jennifer Holm Forest Succession Models, (Jan 2016): 179–221.https://doi.org/10.1201/b19150-10A. Mustafin Coupling-induced oscillations in two intrinsically quiescent populations, Communications in Nonlinear Science and Numerical Simulation 29, no.1-31-3 (Dec 2015): 391–399.https://doi.org/10.1016/j.cnsns.2015.05.019Benedicte Bachelot, María Uriarte, Krista McGuire Interactions among mutualism, competition, and predation foster species coexistence in diverse communities, Theoretical Ecology 8, no.33 (Jan 2015): 297–312.https://doi.org/10.1007/s12080-015-0251-2Diego P. Vázquez, Rodrigo Ramos-Jiliberto, Pasquinell Urbani, Fernanda S. Valdovinos, Micky Eubanks A conceptual framework for studying the strength of plant-animal mutualistic interactions, Ecology Letters 18, no.44 (Mar 2015): 385–400.https://doi.org/10.1111/ele.12411 Bibliographie, (Jan 2015): 369–416.https://doi.org/10.3917/herm.ginou.2015.01.0369Nitin Kumar, Ganesh Lad, Elisa Giuntini, Maria E. Kaye, Piyachat Udomwong, N. Jannah Shamsani, J. Peter W. Young, Xavier Bailly Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum, Open Biology 5, no.11 (Jan 2015): 140133.https://doi.org/10.1098/rsob.140133Olga Ferlian, Stefan Scheu Shifts in trophic interactions with forest type in soil generalist predators as indicated by complementary analyses of fatty acids and stable isotopes, Oikos 123, no.1010 (Nov 2013): 1182–1191.https://doi.org/10.1111/j.1600-0706.2013.00848.xErick Maurício G. Cordeiro, Alberto S. Corrêa, Raul Narciso C. Guedes, Youjun Zhang Insecticide-Mediated Shift in Ecological Dominance between Two Competing Species of Grain Beetles, PLoS ONE 9, no.66 (Jun 2014): e100990.https://doi.org/10.1371/journal.pone.0100990Almaz Mustafin Awakened Oscillations in Coupled Consumer-Resource Pairs, Journal of Applied Mathematics 2014 (Jan 2014): 1–20.https://doi.org/10.1155/2014/561958Eliot J. B. McIntire, Alex Fajardo Facilitation as a ubiquitous driver of biodiversity, New Phytologist 201, no.22 (Sep 2013): 403–416.https://doi.org/10.1111/nph.12478Qiongwei Ye, Xin Qiang, Guangxing Song, Nan Zhang Research on and Economic Explanation for LV Competition Model Among E-Business Platforms in the Two-Sided Market Perspective, (Nov 2013): 318–323.https://doi.org/10.1109/ITA.2013.80Christopher A. Johnson, Priyanga Amarasekare Competition for benefits can promote the persistence of mutualistic interactions, Journal of Theoretical Biology 328 (Jul 2013): 54–64.https://doi.org/10.1016/j.jtbi.2013.03.016Matthew Miles Osmond, Claire de Mazancourt How competition affects evolutionary rescue, Philosophical Transactions of the Royal Society B: Biological Sciences 368, no.16101610 (Jan 2013): 20120085.https://doi.org/10.1098/rstb.2012.0085Cruz Vargas-De-León Lyapunov functions for two-species cooperative systems, Applied Mathematics and Computation 219, no.55 (Nov 2012): 2493–2497.https://doi.org/10.1016/j.amc.2012.08.084Y. Wang, M. D. F. Ellwood, F. T. Maestre, Z. Yang, G. Wang, C. Chu Positive interactions can produce species-rich communities and increase species turnover through time, Journal of Plant Ecology 5, no.44 (Mar 2012): 417–421.https://doi.org/10.1093/jpe/rts005 Community Effects, (Aug 2012): 359–434.https://doi.org/10.1201/b12498-8Gerald W Tannock, Charlotte M Wilson, Diane Loach, Gregory M Cook, Jocelyn Eason, Paul W O'Toole, Grietje Holtrop, Blair Lawley Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach, The ISME Journal 6, no.55 (Nov 2011): 927–938.https://doi.org/10.1038/ismej.2011.161Tarzan Legović, Sunčana Geček Impact of maximum sustainable yield on mutualistic communities, Ecological Modelling 230 (Apr 2012): 63–72.https://doi.org/10.1016/j.ecolmodel.2012.01.006Olivier Perru Modéliser la croissance des populations mutualistes : une question scientifique complexe, Philosophia Scientae , no.15-315-3 (Oct 2011): 223–251.https://doi.org/10.4000/philosophiascientiae.697 References, (Sep 2011): 453–500.https://doi.org/10.1002/9783527636792.refs References, (Jul 2011): 353–383.https://doi.org/10.1002/9781444341966.refsJudith Korb, Kevin R. Foster Ecological competition favours cooperation in termite societies, Ecology Letters 13, no.66 (May 2010): 754–760.https://doi.org/10.1111/j.1461-0248.2010.01471.xJ. Nathaniel Holland, Donald L. DeAngelis A consumer–resource approach to the density-dependent population dynamics of mutualism, Ecology 91, no.55 (May 2010): 1286–1295.https://doi.org/10.1890/09-1163.1Robert K. Colwell, Thiago F. Rangel Hutchinson's duality: The once and future niche, Proceedings of the National Academy of Sciences 106, no.supplement_2supplement_2 (Nov 2009): 19651–19658.https://doi.org/10.1073/pnas.0901650106ANDREW ADAMATZKY, MARTIN GRUBE ON LOCALIZATIONS IN MINIMAL CELLULAR AUTOMATA MODEL OF TWO-SPECIES MUTUALISM, International Journal of Bifurcation and Chaos 19, no.0909 (May 2012): 2885–2897.https://doi.org/10.1142/S0218127409024530Megan E. Frederickson, Deborah M. Gordon The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants, Ecology 90, no.66 (Jun 2009): 1595–1607.https://doi.org/10.1890/08-0010.1Jacobo Aguirre, Ricardo L. Viana, Miguel A. F. Sanjuán Fractal structures in nonlinear dynamics, Reviews of Modern Physics 81, no.11 (Mar 2009): 333–386.https://doi.org/10.1103/RevModPhys.81.333Karen Cheney Interspecific Relationships in Blennies, (Dec 2010): 379–404.https://doi.org/10.1201/b10301-20Manuel A. Morales, William F. Morris, William G. Wilson Allee dynamics generated by protection mutualisms can drive oscillations in trophic cascades, Theoretical Ecology 1, no.22 (Oct 2007): 77–88.https://doi.org/10.1007/s12080-007-0006-9Toshinori Okuyama, J. Nathaniel Holland Network structural properties mediate the stability of mutualistic communities, Ecology Letters 11, no.33 (Mar 2008): 208–216.https://doi.org/10.1111/j.1461-0248.2007.01137.xFrÉdÉric Mazenc, Michael Malisoff, JÉrÔme Harmand Further Results on Stabilization of Periodic Trajectories for a Chemostat With Two Species, IEEE Transactions on Automatic Control 53, no.Special IssueSpecial Issue (Jan 2008): 66–74.https://doi.org/10.1109/TAC.2007.911315Gyorgy Karolyi, Celso Grebogi Chaotic advection and fractality: applications in oceanography, (Jun 2007): 1–5.https://doi.org/10.1109/OCEANSE.2007.4302401I. J. Benczik, G. Károlyi, I. Scheuring, T. Tél Coexistence of inertial competitors in chaotic flows, Chaos: An Interdisciplinary Journal of Nonlinear Science 16, no.44 (Dec 2006): 043110.https://doi.org/10.1063/1.2359231ANDREW R. THOMPSON, ROGER M. NISBET, RUSSELL J. SCHMITT Dynamics of mutualist populations that are demographically open, Journal of Animal Ecology 75, no.66 (Nov 2006): 1239–1251.https://doi.org/10.1111/j.1365-2656.2006.01145.xJ. Nathaniel Holland, Toshinori Okuyama, Donald L. DeAngelis Comment on "Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance", Science 313, no.57955795 (Sep 2006): 1887–1887.https://doi.org/10.1126/science.1129547Almaz Mustafin Two mutually loss-coupled lasers featuring astable multivibrator, Physica D: Nonlinear Phenomena 218, no.22 (Jun 2006): 167–176.https://doi.org/10.1016/j.physd.2006.05.003Brian McGill A mechanistic model of a mutualism and its ecological and evolutionary dynamics, Ecological Modelling 187, no.44 (Oct 2005): 413–425.https://doi.org/10.1016/j.ecolmodel.2005.02.002Tamás Tél, Alessandro de Moura, Celso Grebogi, György Károlyi Chemical and biological activity in open flows: A dynamical system approach, Physics Reports 413, no.2-32-3 (Jul 2005): 91–196.https://doi.org/10.1016/j.physrep.2005.01.005István Scheuring, György Károlyi, Zoltán Toroczkai, Tamás Tél, Áron Péntek Competing populations in flows with chaotic mixing, Theoretical Population Biology 63, no.22 (Mar 2003): 77–90.https://doi.org/10.1016/S0040-5809(02)00035-7John F. Bruno, John J. Stachowicz, Mark D. Bertness Inclusion of facilitation into ecological theory, Trends in Ecology & Evolution 18, no.33 (Mar 2003): 119–125.https://doi.org/10.1016/S0169-5347(02)00045-9Giovanni Santoboni, Takashi Nishikawa, Zoltán Toroczkai, Celso Grebogi Autocatalytic reactions of phase distributed active particles, Chaos: An Interdisciplinary Journal of Nonlinear Science 12, no.22 (Jun 2002): 408–416.https://doi.org/10.1063/1.1478774 J. Nathaniel Holland , Donald L. DeAngelis , and Judith L. Bronstein Population Dynamics and Mutualism: Functional Responses of Benefits and Costs. J. N. Holland et al., The American Naturalist 159, no.33 (Jul 2015): 231–244.https://doi.org/10.1086/338510Giorgio Israel, Ana Millán Gasca References, (Jan 2002): 389–405.https://doi.org/10.1007/978-3-0348-8123-4_24György Károlyi, Áron Péntek, István Scheuring, Tamás Tél, Zoltán Toroczkai Chaotic flow: The physics of species coexistence, Proceedings of the National Academy of Sciences 97, no.2525 (Nov 2000): 13661–13665.https://doi.org/10.1073/pnas.240242797IstvÁn Scheuring, GyÖrgy KÁrolyi, Áron PÉntek, TamÁs TÉl, ZoltÁn Toroczkai A model for resolving the plankton paradox: coexistence in open flows, Freshwater Biology 45, no.22 (Dec 2001): 123–132.https://doi.org/10.1046/j.1365-2427.2000.00665.xP.W Hochachka Pinniped diving response mechanism and evolution: a window on the paradigm of comparative biochemistry and physiology, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 126, no.44 (Aug 2000): 435–458.https://doi.org/10.1016/S1095-6433(00)00231-2Michiel Hazewinkel M, (Jan 2000): 327–352.https://doi.org/10.1007/978-94-015-1279-4_13Á Péntek, G Károlyi, I Scheuring, T Tél, Z Toroczkai, J Kadtke, C Grebogi Fractality, chaos, and reactions in imperfectly mixed open hydrodynamical flows, Physica A: Statistical Mechanics and its Applications 274, no.1-21-2 (Dec 1999): 120–131.https://doi.org/10.1016/S0378-4371(99)00408-2S.I. Bartsev, V.A. Okhonin Potentialities of theoretical and experimental prediction of Life Support Systems reliability, Advances in Space Research 24, no.33 (Jan 1999): 407–412.https://doi.org/10.1016/S0273-1177(99)00491-3Steven Ripp, Robert V. Miller Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa, Microbiology 144, no.88 (Aug 1998): 2225–2232.https://doi.org/10.1099/00221287-144-8-2225P Zawadzki, M A Riley, F M Cohan Homology among nearly all plasmids infecting three Bacillus species, Journal of Bacteriology 178, no.11 (Jan 1996): 191–198.https://doi.org/10.1128/jb.178.1.191-198.1996I. Walker Competition and information, Acta Biotheoretica 41, no.33 (Sep 1993): 249–266.https://doi.org/10.1007/BF00712171 N. E. Pierce , and W. R. Young Lycaenid Butterflies and Ants: Two-Species Stable Equilibria in Mutualistic, Commensal, and Parasitic Interactions, The American Naturalist 128, no.22 (Oct 2015): 216–227.https://doi.org/10.1086/284555Douglas H. Boucher Lotka-volterra models of mutualism and positive density-dependence, Ecological Modelling 27, no.3-43-4 (Apr 1985): 251–270.https://doi.org/10.1016/0304-3800(85)90006-7 Bibliography, (Jan 1985): 385–455.https://doi.org/10.1016/B978-0-12-554520-4.50027-7 Carole L. Wolin , and Lawrence R. Lawlor Models of Facultative Mutualism: Density Effects, The American Naturalist 124, no.66 (Oct 2015): 843–862.https://doi.org/10.1086/284320John F. Addicott, H.I. Freedman On the structure and stability of mutualistic systems: Analysis of predator-prey and competition models as modified by the action of a slow-growing mutualist, Theoretical Population Biology 26, no.33 (Dec 1984): 320–339.https://doi.org/10.1016/0040-5809(84)90037-6William K.W. Li A modified logistic growth equation: Effects of cadmium chloride on the diatom, Thalassiosira weissflogii and the dinoflagellate, Amphidinium carteri in unialgal and bialgal batch cultures, Aquatic Toxicology 5, no.44 (Nov 1984): 307–313.https://doi.org/10.1016/0166-445X(84)90011-0I. Walker The volterra competition equations with resource - Independent growth coefficients and discussion on their biological and biophysical implications, Acta Biotheoretica 33, no.44 (Jan 1984): 253–270.https://doi.org/10.1007/BF00048431I. Walker The physical dimensions and biological meaning of the coefficients in the Volterra competition equations and their consequences for the possibility of coexistence, Acta Biotheoretica 32, no.22 (Jun 1983): 93–122.https://doi.org/10.1007/BF02045063 Wyatt W. Anderson , and Jonathan Arnold Density-Regulated Selection with Genotypic Interactions, The American Naturalist 121, no.55 (Oct 2015): 649–655.https://doi.org/10.1086/284092Michael S. Foster FACTORS CONTROLLING THE INTERTIDAL ZONATION OF IRIDAEA FLACCIDA (RHODOPHYTA)1, Journal of Phycology 18, no.22 (Jun 1982): 285–294.https://doi.org/10.1111/j.0022-3646.1982.00285.xMichael S. Foster FACTORS CONTROLLING THE INTERTIDAL ZONATION OF IRIDAEA FLACCIDA (RHODOPHYTA), Journal of Phycology 18, no.22 (Jun 1982): 285–294.https://doi.org/10.1111/j.1529-8817.1982.tb03185.xJ.Merritt Emlen Field estimation of competition intensity, Theoretical Population Biology 19, no.33 (Jun 1981): 275–287.https://doi.org/10.1016/0040-5809(81)90022-8John F. Addicott Stability properties of 2-species models of mutualism: Simulation studies, Oecologia 49, no.11 (May 1981): 42–49.https://doi.org/10.1007/BF00376896 John Vandermeer Indirect Mutualism: Variations on a Theme by Stephen Levine, The American Naturalist 116, no.33 (Oct 2015): 441–448.https://doi.org/10.1086/283637W. ARTHUR Interspecific competition in Drosophila: II. Competitive outcome in some 2-resource environments, Biological Journal of the Linnean Society 13, no.22 (Jan 2008): 119–128.https://doi.org/10.1111/j.1095-8312.1980.tb00075.xG. Bojadziev, S. Chan Asymptotic solutions of differential equations with time delay in population dynamics, Bulletin of Mathematical Biology 41, no.33 (May 1979): 325–342.https://doi.org/10.1007/BF02460815W. Charles Kerfoot, Robert A. Pastorok Survival versus competition: evolutionary compromises and diversity in the zooplankton, SIL Proceedings, 1922-2010 20, no.11 (Dec 2017): 362–374.https://doi.org/10.1080/03680770.1977.11896534 Sandra J. Smith-Gill , and Douglas E. Gill Curvilinearities in the Competition Equations: An Experiment with Ranid Tadpoles, The American Naturalist 112, no.985985 (Oct 2015): 557–570.https://doi.org/10.1086/283297G. Bojadziev The Krylov-Bogoliubov-Mitropolskii method applied to models of population dynamics, Bulletin of Mathematical Biology 40, no.33 (May 1978): 335–345.https://doi.org/10.1007/BF02461605S.D. Tuljapurkar, J.S. Semura Dynamic equilibrium under periodic perturbations in simple ecosystem models, Journal of Theoretical Biology 66, no.22 (May 1977): 327–343.https://doi.org/10.1016/0022-5193(77)90175-8 Bruce R. Levin , Frank M. Stewart , and Lin Chao Resource-Limited Growth, Competition, and Predation: A Model and Experimental Studies with Bacteria and Bacteriophage, The American Naturalist 111, no.977977 (Oct 2015): 3–24.https://doi.org/10.1086/283134S.N. Biswas, K.C. Gupta, B.B. Karmakar Brillouin-Wigner perturbation solution of Volterra's prey-predator system, Journal of Theoretical Biology 64, no.22 (Jan 1977): 253–260.https://doi.org/10.1016/0022-5193(77)90355-1 Peter E. Smouse The Implications of Density-Dependent Population Growth for Frequency- and Density-Dependent Selection, The American Naturalist 110, no.975975 (Oct 2015): 849–860.https://doi.org/10.1086/283107N. Yamamura A mathematical approach to spatial distribution and temporal succession in plant communities, Bulletin of Mathematical Biology 38, no.55 (Sep 1976): 517–526.https://doi.org/10.1007/BF02459550M.P. Hassell, H.N. Comins Discrete time models for two-species competition, Theoretical Population Biology 9, no.22 (Apr 1976): 202–221.https://doi.org/10.1016/0040-5809(76)90045-9Ranabir Dutt, P. K. Ghosh, B. B. Karmakar Application of perturbation theory to the nonlinear Volterra-Gause-Witt model for prey-predator interaction, Bulletin of Mathematical Biology 37, no.22 (Apr 1975): 139–146.https://doi.org/10.1007/BF02470620W. A. Muller Competition for food and other niche-related studies of three species of salt-marsh foraminifera, Marine Biology 31, no.44 (Jan 1975): 339–351.https://doi.org/10.1007/BF00392091Jagannathan Gomatam A new model for interacting populations—II: Principle of competitive exclusion, Bulletin of Mathematical Biology 36, no.44 (Aug 1974): 355–364.https://doi.org/10.1007/BF02464614Arthur L. Koch Coexistence resulting from an alternation of density dependent and density independent growth, Journal of Theoretical Biology 44, no.22 (Apr 1974): 373–386.https://doi.org/10.1016/0022-5193(74)90168-4Francisco J. Ayala, Michael E. Gilpin, Joan G. Ehrenfeld Competition between species: Theoretical models and experimental tests, Theoretical Population Biology 4, no.33 (Sep 1973): 331–356.https://doi.org/10.1016/0040-5809(73)90014-2Michael E. Gilpin, Keith E. Justice A note on nonlinear competition models, Mathematical Biosciences 17, no.1-21-2 (Jun 1973): 57–63.https://doi.org/10.1016/0025-5564(73)90060-6A.G. Fredrickson, J.L. Jost, H.M. Tsuchiya, Ping-hwa Hsu Predator-prey interactions between Malthusian populations, Journal of Theoretical Biology 38, no.33 (Mar 1973): 487–526.https://doi.org/10.1016/0022-5193(73)90253-1T. P. COLEMAN, JAGANNATHAN GOMATAM Application of a New Model of Species Competition to Drosophila, Nature New Biology 239, no.9595 (Oct 1972): 251–253.https://doi.org/10.1038/newbio239251a0R. M. May Limit Cycles in Predator-Prey Communities, Science 177, no.40524052 (Sep 1972): 900–902.https://doi.org/10.1126/science.177.4052.900MICHAEL E. GILPIN, KEITH E. JUSTICE Reinterpretation of the Invalidation of the Principle of Competitive Exclusion, Nature 236, no.53455345 (Apr 1972): 273–274.https://doi.org/10.1038/236273a0RICHARD B. WILLIAMS Steady-State Equilibriums in Simple Nonlinear Food Webs, (Jan 1972): 213–240.https://doi.org/10.1016/B978-0-12-547202-9.50014-0Ulrich G. Haussmann Abstract food webs in ecology, Mathematical Biosciences 11, no.3-43-4 (Aug 1971): 291–316.https://doi.org/10.1016/0025-5564(71)90090-3Bruce R. Levin THE OPERATION OF SELECTION IN SITUATIONS OF INTERSPECIFIC COMPETITION, Evolution 25, no.22 (May 2017): 249–264.https://doi.org/10.1111/j.1558-5646.1971.tb01878.xFRANCISCO J. AYALA Environmental Fluctuations and Population Size, Nature 231, no.52985298 (May 1971): 112–114.https://doi.org/10.1038/231112b0NARENDRA S. GOEL, SAMARESH C. MAITRA, ELLIOTT W. MONTROLL On the Volterra and Other Nonlinear Models of Interacting Populations, Reviews of Modern Physics 43, no.22 (Apr 1971): 231–276.https://doi.org/10.1103/RevModPhys.43.231 References, (Jan 1971): 143–145.https://doi.org/10.1016/B978-0-12-287450-5.50020-XRICHARD B. WILLIAMS Computer Simulation of Energy Flow in Cedar Bog Lake, Minnesota Based on the Classical Studies of Lindeman, (Jan 1971): 543–582.https://doi.org/10.1016/B978-0-12-547201-2.50019-4G. F. GAUSE Criticism of Invalidation of Principle of Competitive Exclusion, Nature 227, no.52535253 (Jul 1970): 89–89.https://doi.org/10.1038/227089a0F. J. AYALA Invalidation of Principle of Competitive Exclusion Defended, Nature 227, no.52535253 (Jul 1970): 89–90.https://doi.org/10.1038/227089b0J.D. Parrish, S.B. Saila Interspecific competition, predation and species diversity, Journal of Theoretical Biology 27, no.22 (May 1970): 207–220.https://doi.org/10.1016/0022-5193(70)90138-4 John H. Vandermeer The Community Matrix and the Number of Species in a Community, The American Naturalist 104, no.935935 (Oct 2015): 73–83.https://doi.org/10.1086/282641Francisco J. Ayala Competition, Coexistence, and Evolution, (Jan 1970): 121–158.https://doi.org/10.1007/978-1-4615-9585-4_4Drew W. Purves, Mark C. Vanderwel, David A. Coomes, David F. R. P. Burslem, William D. Simonson Traits, states and rates: understanding coexistence in forests, (): 161–194.https://doi.org/10.1017/CBO9781107323506.010Edward W. Beals Vegetational Change Along Altitudinal Gradients, Science 165, no.38973897 (Sep 1969): 981–985.https://doi.org/10.1126/science.165.3897.981George Tamaki, William W. Allen Competition and other factors influencing the population dynamics of Aphis gossypii and Macrosiphoniella sanborni on greenhouse chrysanthemums, Hilgardia 39, no.1717 (Feb 2014): 447–505.https://doi.org/10.3733/hilg.v39n17p447Richard S. Miller Pattern and Process in Competition, (Jan 1967): 1–74.https://doi.org/10.1016/S0065-2504(08)60319-0Conrad A. Istock DISTRIBUTION, COEXISTENCE, AND COMPETITION OF WHIRLIGIG BEETLES, Evolution 20, no.22 (May 2017): 211–234.https://doi.org/10.1111/j.1558-5646.1966.tb03357.xR. H. Whittaker Dominance and Diversity in Land Plant Communities: Numerical relations of species express the importance of competition in community function and evolution, Science 147, no.36553655 (Jan 1965): 250–260.https://doi.org/10.1126/science.147.3655.250W. R. Utz, P. E. Waltman Periodicity and boundedness of solutions of generalized differential equations of growth, The Bulletin of Mathematical Biophysics 25, no.11 (Mar 1963): 75–93.https://doi.org/10.1007/BF02477772Robert H. Whittaker Classification of natural communities, The Botanical Review 28, no.11 (Jan 1962): 1–239.https://doi.org/10.1007/BF02860872 G. E. Hutchinson The Paradox of the Plankton, The American Naturalist 95, no.882882 (Oct 2015): 137–145.https://doi.org/10.1086/282171W. J. Cunningham Simultaneous nonlinear equations of growth, The Bulletin of Mathematical Biophysics 17, no.22 (Jun 1955): 101–110.https://doi.org/10.1007/BF02477988G.E. HUTCHINSON, E.S. DEEVEY Ecological Studies on Populations, (Jan 1949): 325–359.https://doi.org/10.1016/B978-1-4832-0000-2.50014-7G. EVELYN HUTCHINSON CIRCULAR CAUSAL SYSTEMS IN ECOLOGY, Annals of the New York Academy of Sciences 50, no.4 Teleological4 Teleological (Oct 1948): 221–246.https://doi.org/10.1111/j.1749-6632.1948.tb39854.x On competition between different species of graminivorous insects, Proceedings of the Royal Society of London. Series B - Biological Sciences 132, no.869869 (Jan 1997): 362–395.https://doi.org/10.1098/rspb.1945.0003 Ralph Buchsbaum Chick Tissue Cells and Chlorella in Mixed Cultures, Physiological Zoology 10, no.44 (Sep 2015): 373–380.https://doi.org/10.1086/physzool.10.4.30151423
Referência(s)