A measurement of Lagrangian velocity autocorrelation in approximately isotropic turbulence
1974; Cambridge University Press; Volume: 62; Issue: 2 Linguagem: Inglês
10.1017/s002211207400067x
ISSN1469-7645
Autores Tópico(s)Plant Water Relations and Carbon Dynamics
ResumoBy measuring the heat dispersion behind a heated wire stretched across a wind tunnel (Taylor 1921, 1935), the Lagrangian velocity autocorrelation was determined in an approximately isotropic, grid-generated turbulent flow. The techniques were similar to previous ones, but the scatter is less. Assuming self-preservation of the Lagrangian velocity statistics in a form consistent with recent measurements of decay in this flow (Comte-Bellot & Corrsin 1966, 1971), a stationary and an approximately self-preserving form for the dispersion were derived and approximately verified over the range of the experiment. Possibly the most important aspect of this experiment is that data were available in the same flow on the simplest Eulerian velocity autocorrelation in time, the correlation at a fixed spatial point translating with the mean flow (Comte-Bellot & Corrsin 1971). Thus, the Lagrangian velocity autocorrelation coefficient function calculated from the dispersion data could be compared with this corresponding Eulerian function. It was found that the Lagrangian Taylor micro-scale is very much larger than the analogous Eulerian microscale (76 ms compared with 6.2ms), contrary to an estimate of Corrsin (1963). The Lagrangian integral time scale is roughly equal to the Eulerian one, being larger by about 25 %.
Referência(s)