Artigo Revisado por pares

Group Theoretical Interpretations of Special Function Identities: Two Examples

1994; Society for Industrial and Applied Mathematics; Volume: 25; Issue: 2 Linguagem: Inglês

10.1137/s0036141092230337

ISSN

1095-7154

Autores

L. C. Biedenharn, A. K. Çiftçi,

Tópico(s)

Black Holes and Theoretical Physics

Resumo

Previous article Next article Group Theoretical Interpretations of Special Function Identities: Two ExamplesL. C. Biedenharn and A. K. ÇiftçiL. C. Biedenharn and A. K. Çiftçihttps://doi.org/10.1137/S0036141092230337PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractTwo examples, taken from quantum physics, are used to illustrate how group theoretical concepts afford an intuitive understanding of relationships between certain special function identities.[1] E. P. Wigner, Application of Group Theory to the Special Functions of Mathematical Physics, 1955, Princeton University, Princeton, NJ, unpublished lecture notes Google Scholar[2] N. I. Vilenkin, Special Functions and the Theory of Group Representations, Nauka, Moscow, 1965 Google Scholar[3] R. A. Askey, , T. H. Koornwinder and , W. Schempp, Special functions: group theoretical aspects and applications, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, Holland, 1984, 129–162 85i:22003 0543.00007 CrossrefGoogle Scholar[4] J. A. Gaunt, The triplets of helium, Trans. Roy. Soc., A228 (1929), 151–196 CrossrefGoogle Scholar[5] W. T. Sharp, Racah Algebra and the Contraction of Groups, Department of Mathematics, University of Toronto, Toronto, Ontario, 1984 (based on the doctoral thesis of W. T. Sharp carried out under the direction of E. P. Wigner, Princeton University, 1960) Google Scholar[6] M. Danos, , A. A. Stahlhofen and , L. C. Biedenharn, Intrinsic sticking in dt muoncatalyzed fusion: interplay of atomic, molecular and nuclear Phenomena, Ann. Phys., 192 (1989), 158–203 10.1016/0003-4916(89)90124-3 CrossrefISIGoogle Scholar[7] A. K. Çiftçi, Ph.D. Thesis, A New Calculation Technique for Three-Body Final States, Department of Physics, Duke University, Durham, NC, 1991 Google Scholar[8] S. J. Jones, Muon-catalysed fusion revisited, Nature, 321 (1986), 127– CrossrefISIGoogle Scholar[9] L. I. Ponomarev, Muon catalysed fusion, Contemp. Phys., 31 (1990), 219–245 CrossrefISIGoogle Scholar[10] V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820 89f:17017 0667.16003 Google Scholar[11] Michio Jimbo, A q-difference analogue of $U({\germ g})$ and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), 63–69 86k:17008 0587.17004 CrossrefISIGoogle Scholar[12] L. C. Biedenharn and , J. D. Louck, Angular momentum in quantum physics, Encyclopedia of Mathematics and its Applications, Vol. 8, Addison-Wesley Publishing Co., Reading, Mass., 1981xxxii+716, reprinted by Cambridge University Press, Cambridge, 1989 83a:81001 0474.00023 Google Scholar[13] E. P. Wigner, On the matrices which reduce the Kronecker products of representations of S. R. groups, 1940, unpublished; in Quantum Theory of Angular Momentum, L. C. Biedenharn and H. van Dam, eds., Academic Press, New York, 1965, pp. 87–133 Google Scholar[14] L. C. Biedenharn, , A. Giovannini and , J. D. Louck, Canonical definition of Wigner coefficients in ${\rm U}\sb{n}$, J. Mathematical Phys., 8 (1967), 691–700 35:2563 0156.46402 CrossrefISIGoogle Scholar[15] Eugene P. Wigner, Group theory: And its application to the quantum mechanics of atomic spectra, Expanded and improved ed. Translated from the German by J. J. Griffin. Pure and Applied Physics. Vol. 5, Academic Press, New York, 1959xi+372 21:5442 0085.37905 Google Scholar[16] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England, 1944vi+804, 2nd ed. 6,64a 0063.08184 Google Scholar[17] A. Erdelyi, Higher transcendental functions. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953xxvi+302 15,419i 0051.30303 A. Erdelyi, Higher transcendental functions. Vol. II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953xvii+396 15,419i 0052.29502 Google Scholar[18] A. Erdelyi, Tables of integral transforms. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954xx+391 15,868a 0055.36401 A. Erdélyi, , W. Magnus, , F. Oberhettinger and , F. G. Tricomi, Tables of integral transforms. Vol. II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954xvi+451 16,468c 0058.34103 Google Scholar[19] E. Inönü and , E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U. S. A., 39 (1953), 510–524 14,1061c 0050.02601 CrossrefISIGoogle Scholar[20] I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J., 18 (1951), 221–265 13,534b 0045.38601 CrossrefISIGoogle Scholar[21] L. C. Biedenharn, Wigner coefficients for the $R\sb{4}$ group and some applications., J. Mathematical Phys., 2 (1961), 433–441 26:3790 0098.12802 CrossrefISIGoogle Scholar[22] Lawrence C. Biedenharn and , James D. Louck, The Racah-Wigner algebra in quantum theory, Encyclopedia of Mathematics and its Applications, Vol. 9, Addison-Wesley Publishing Co., Reading, Mass., 19811xxxviii+534, Advanced Book Program 83d:81002 0474.00024 Google Scholar[23] James D. Talman, Special functions: A group theoretic approach, Based on lectures by Eugene P. Wigner. With an introduction by Eugene P. Wigner, W. A. Benjamin, Inc., New York-Amsterdam, 1968xii+260 39:511 0197.04301 Google Scholar[24] L. C. Biedenharn and , M. E. Rose, Theory of Angular Correlation of Nuclear Radiation, Rev. Modern Phys., 25 (1953), 729– 10.1103/RevModPhys.25.729 0052.45102 CrossrefGoogle Scholar[25] L. C. Biedenharn, Fay Ajzenberg-Selove, Angular Correlation in Nuclear SpectroscopyNuclear Spectroscopy II, Chap. V, Academic Press, New York, 1960 CrossrefGoogle Scholar[26] A. D. Jackson and , L. C. Maximon, Integrals of products of Bessel functions, SIAM J. Math. Anal., 3 (1972), 446–460 10.1137/0503043 47:520 0276.33019 LinkGoogle ScholarKeywordsspecial functionssymmetry groupsquantal angular momentum group $SU(2)$group representationsKronecker product (Wigner product law)group contraction Previous article Next article FiguresRelatedReferencesCited byDetails Volume 25, Issue 2| 1994SIAM Journal on Mathematical Analysis History Submitted:04 May 1992Accepted:08 February 1993Published online:01 August 2006 InformationCopyright © 1994 © Society for Industrial and Applied MathematicsKeywordsspecial functionssymmetry groupsquantal angular momentum group $SU(2)$group representationsKronecker product (Wigner product law)group contractionMSC codes33C1033C4533C55PDF Download Article & Publication DataArticle DOI:10.1137/S0036141092230337Article page range:pp. 274-287ISSN (print):0036-1410ISSN (online):1095-7154Publisher:Society for Industrial and Applied Mathematics

Referência(s)