Renewal Processes and Some Stochastic Programming Problems in Economics
1970; Society for Industrial and Applied Mathematics; Volume: 19; Issue: 2 Linguagem: Inglês
10.1137/0119028
ISSN1095-712X
Autores Tópico(s)Stochastic processes and statistical mechanics
ResumoPrevious article Next article Renewal Processes and Some Stochastic Programming Problems in EconomicsBernard BereanuBernard Bereanuhttps://doi.org/10.1137/0119028PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] G. Tintner, Stochastic linear programming with applications to agricultural economics, Proceedings of the Second Symposium in Linear Programming, Washington, D. C., 1955, National Bureau of Standards, Washington, D. C., 1955, 197–228 MR0075515 (17,760b) Google Scholar[2] Bernard Bereanu, On stochastic linear programming distribution problems, stochastic technology matrix, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8 (1967), 148–152 10.1007/BF00536917 MR0216860 (35:7689) 0155.28101 CrossrefISIGoogle Scholar[3] George B. Dantzig, Linear programming and extensions, Princeton University Press, Princeton, N.J., 1963xvi+625 MR0201189 (34:1073) 0108.33103 CrossrefGoogle Scholar[4] C. Van De Panne and , W. Popp, Minimum-cost cattle feed under probabilistic protein constraints, Management Sci., 9 (1963), 405–430 CrossrefISIGoogle Scholar[5] B. Bereanu, Stochastic transportation problem. I. Case of random costs, Com. Acad. R. P. Romine, 13 (1963), 325–331 MR0177808 (31:2070) 0292.60024 Google Scholar[6] B. Bereanu, Stochastic transportation problem. II. Case of random consumptions, Com. Acad. R. P. Romine, 13 (1963), 333–337 MR0195578 (33:3777) 0292.60025 Google Scholar[7] Włodzimierz Szwarc, The transportation problem with stochastic demand, Management Sci., 11 (1964/1965), 33–50 MR0172707 (30:2926) 0136.14202 CrossrefISIGoogle Scholar[8] A. C. Williams, A stochastic transportation problem, Operations Res., 11 (1963), 759–770 MR0159703 (28:2920) 0132.13902 CrossrefISIGoogle Scholar[9] S. Saks, Theory of the Integral, Warszawa-Lwow, New York, 1937 0017.30004 Google Scholar[10] G. Oplatka, Der wirtschaftliche Einfluss der Kampagne-Dauer, Z. Zucker, 3 (1956), 125–131 Google Scholar[11] Richard Bellman, , Robert E. Kalaba and , Jo Ann Lockett, Numerical inversion of the Laplace transform: Applications to biology, economics, engineering and physics, American Elsevier Publishing Co., Inc., New York, 1966viii+249 MR0205454 (34:5282) 0147.14003 Google Scholar[12] D. R. Cox, Renewal theory, Methuen & Co. Ltd., London, 1962ix+142 MR0153061 (27:3030) 0103.11504 Google Scholar[13] Walter L. Smith, Renewal theory and its ramifications, J. Roy. Statist. Soc. Ser. B, 20 (1958), 243–302 MR0099090 (20:5534) 0091.30101 Google Scholar[14] B. Bereanu, On stochastic linear programming. I. Distribution problems: A single random variable, Rev. Math. Pures Appl. (Bucarest), 8 (1963), 683–697 MR0177806 (31:2068) 0137.38101 Google Scholar[15] Bernard Bereanu, Régions ce décision et répartition de l'optimum dans la programmation linéaire, C. R. Acad. Sci. Paris, 259 (1964), 1383–1386 MR0169695 (29:6940) 0129.12006 Google Scholar[16] M. Courtillot, Masters Thesis, Contribution à la théorie de la programmation linéaire et de la programmation stochastique, Thèse, Faculté des Sciences de l'université de Paris, Paris, 1963 Google Scholar[17] András Prékopa, On the probability distribution of the optimum of a random linear program, SIAM J. Control, 4 (1966), 211–222 MR0191638 (32:9041) 0143.41903 LinkGoogle Scholar[18] B. Bereanu, A property of convex piecewise linear functions with applications to mathematical programming, Unternehmensforschung, 9 (1965), 112–119 10.1007/BF01919478 MR0191654 (32:9057) 0136.14101 CrossrefGoogle Scholar[19] J. H. B. Kemperman, The passage problem for a stationary Markov chain, Statistical Research Monographs, Vol. I, The University of Chicago Press, Chicago, Ill., 1961vii+127 MR0119226 (22:9992) CrossrefGoogle Scholar[20] P. Kall, Qualitative Aussagen zu einigen Problemen der stochastischen Programmierung, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 6 (1966), 246–272 10.1007/BF00531806 MR0207388 (34:7203) 0171.40602 CrossrefGoogle Scholar[21] R. J.-B. Wets, Programming under uncertainty: The equivalent convex program, SIAM J. Appl. Math., 14 (1966), 89–105 10.1137/0114008 MR0189811 (32:7231) 0139.13303 LinkISIGoogle Scholar[22] Arthur F. Veinott, Jr. and , Harvey M. Wagner, Computing optimal $(s,\,S)$ inventory policies, Management Sci., 11 (1964/1965), 525–552 MR0176841 (31:1113) 0137.14102 CrossrefISIGoogle Scholar[23] Giorgio Dall'Aglio, Present value of a renewal process, Ann. Math. Statist., 35 (1964), 1326–1331 MR0164383 (29:1680) 0129.10601 CrossrefISIGoogle Scholar[24] Bernard Bereanu, On stochastic linear programming. IV. Some numerical methods and their computer implementation, Proceedings of the Fourth Conference on Probability Theory (Braşov, 1971), Editura Acad. R. S. R., Bucharest, 1973, 13–36 MR0395820 (52:16612) 0286.90048 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Stochastic — Parametric Linear Programs IIRecent Results in Stochastic Programming | 1 Jan 1980 Cross Ref The continuity of the optimum in parametric programming and applications to stochastic programmingJournal of Optimization Theory and Applications, Vol. 18, No. 3 | 1 Mar 1976 Cross Ref On the use of computers in planning under conditions of uncertaintyComputing, Vol. 15, No. 1 | 1 Mar 1975 Cross Ref Stable stochastic linear programs and applicationsMathematische Operationsforschung und Statistik, Vol. 6, No. 4 | 27 June 2007 Cross Ref The Cartesian Integration Method in Stochastic Linear ProgrammingNumerische Methoden bei Optimierungsaufgaben | 1 Jan 1973 Cross Ref Volume 19, Issue 2| 1970SIAM Journal on Applied Mathematics266-485 History Submitted:23 April 1968Accepted:08 September 1969Published online:17 February 2012 InformationCopyright © 1970 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0119028Article page range:pp. 308-322ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics
Referência(s)