Boundary Value Problems for $y'' = f[x,y,\lambda )$ on $(a,\infty )$
1969; Society for Industrial and Applied Mathematics; Volume: 17; Issue: 1 Linguagem: Inglês
10.1137/0117009
ISSN1095-712X
Autores Tópico(s)Numerical methods for differential equations
ResumoPrevious article Next article Boundary Value Problems for $y'' = f[x,y,\lambda )$ on $(a,\infty )$Warren E. ShreveWarren E. Shrevehttps://doi.org/10.1137/0117009PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Zeev Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141–175 MR0123775 (23:A1097) 0099.29104 CrossrefISIGoogle Scholar[2] R. M. Moroney, A class of characteristic-value problems, Trans. Amer. Math. Soc., 102 (1962), 446–470 MR0148982 (26:6478) 0112.05601 CrossrefGoogle Scholar[3] Abraham Tal, Eigenfunctions for a class of nonlinear differential equations, J. Differential Equations, 3 (1967), 112–134 10.1016/0022-0396(67)90010-1 MR0201723 (34:1605) 0146.11602 CrossrefISIGoogle Scholar[4] Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 234–252 MR0027925 (10,376c) 0031.35402 CrossrefISIGoogle Scholar[5] K. W. Schrader, Masters Thesis, Boundary value problems for a second order ordinary differential equation on infinite intervals, Doctoral thesis, University of Nebraska, 1966, (Note: This thesis is in part published in [6].) Google Scholar[6] Keith W. Schrader, Boundary-value problems of second-order ordinary differential equations, J. Differential Equations, 3 (1967), 403–413 10.1016/0022-0396(67)90040-X MR0216058 (35:6893) 0152.28401 CrossrefISIGoogle Scholar[7] Leonard Fountain and , Lloyd Jackson, A generalized solution of the boundary value problem for $y\sp{\prime\prime}=f(x,\,y,\,y\sp{\prime} )$, Pacific J. Math., 12 (1962), 1251–1272 MR0163002 (29:305) 0112.05602 CrossrefISIGoogle Scholar[8] J. W. Bebernes and , L. K. Jackson, Infinite interval boundary value problems for $y\sp{\prime\prime}=f(x,\,y)$, Duke Math. J., 34 (1967), 39–47 10.1215/S0012-7094-67-03404-7 MR0206386 (34:6205) 0145.33102 CrossrefISIGoogle Scholar[9] Philip Hartman, Ordinary differential equations, John Wiley & Sons Inc., New York, 1964xiv+612 MR0171038 (30:1270) 0125.32102 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Existence results of ψ -Hilfer integro-differential equations with fractional order in Banach spaceAnnales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Vol. 19, No. 1 | 31 December 2020 Cross Ref A note on terminal value problems for fractional differential equations on infinite intervalApplied Mathematics Letters, Vol. 52 | 1 Feb 2016 Cross Ref Second Order Boundary Value ProblemsInfinite Interval Problems for Differential, Difference and Integral Equations | 1 Jan 2001 Cross Ref Global existence and asymptotic behavior of solutions of second-order nonlinear differential equationsJournal of Mathematical Analysis and Applications, Vol. 122, No. 1 | 1 Feb 1987 Cross Ref Limit boundary value problems of retarded functional-differential equationsProceedings of the American Mathematical Society, Vol. 98, No. 1 | 1 January 1986 Cross Ref Positive solutions of a nonlinear initial-value problem on half-lineJournal of Optimization Theory and Applications, Vol. 39, No. 1 | 1 Jan 1983 Cross Ref A boundary value problem on an infinite intervalProceedings of the Edinburgh Mathematical Society, Vol. 19, No. 3 | 20 January 2009 Cross Ref Terminal Value Problems for Second Order Nonlinear Differential EquationsWarren E. ShreveSIAM Journal on Applied Mathematics, Vol. 18, No. 4 | 31 July 2006AbstractPDF (631 KB) Volume 17, Issue 1| 1969SIAM Journal on Applied Mathematics1-221 History Submitted:03 March 1968Published online:28 July 2006 InformationCopyright © 1969 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0117009Article page range:pp. 84-97ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics
Referência(s)