Regge Phenomenology of Two-Particle Inclusive Processes

1973; American Physical Society; Volume: 7; Issue: 7 Linguagem: Inglês

10.1103/physrevd.7.2080

ISSN

1538-4500

Autores

Richard C. Brower, R. N. Cahn, John Ellis,

Tópico(s)

Theoretical and Computational Physics

Resumo

Using the Regge analysis of Mueller and assuming factorization we calculate the leading meson Regge corrections to scaling in several two-particle inclusive processes, $a+b\ensuremath{\rightarrow}c+d+X$. We consider the limit where $c$ is a fragment of $a$, and $d$ is a fragment of $b$, denoted by ($a\ensuremath{\rightarrow}c|d\ensuremath{\leftarrow}b|$). Inclusive Reggeon vertices are extracted from one-particle inclusive data, using exchange-degeneracy assumptions motivated by experiment and conservative theoretical prejudices about early scaling. These vertices are then combined (i) to predict that the following processes should scale early: ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\leftarrow}{\ensuremath{\pi}}^{+}$), ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ifmmode\pm\else\textpm\fi{}}|{\ensuremath{\pi}}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\leftarrow}p$), ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{+}\ensuremath{\leftarrow}p$), and ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ifmmode\pm\else\textpm\fi{}}|{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\leftarrow}{K}^{+}$), (ii) to predict large Regge corrections to scaling in the processes ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{+}\ensuremath{\leftarrow}p$) and ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{+}\ensuremath{\leftarrow}{K}^{\ensuremath{-}}$), and (iii) to make qualitative predictions about other inclusive processes. Comparisons with experiment agree with the predictions for ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\leftarrow}p$), ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\leftarrow}{K}^{+}$), and ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{+}\ensuremath{\leftarrow}{K}^{\ensuremath{-}}$) and are consistent with our expectations for ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\leftarrow}{\ensuremath{\pi}}^{+}$) and ($p\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}|{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\leftarrow}{\ensuremath{\pi}}^{\ensuremath{-}}$).

Referência(s)