The Central Limit Theorem for the Spectrum of Random Jacobi Matrices
1981; Society for Industrial and Applied Mathematics; Volume: 25; Issue: 3 Linguagem: Inglês
10.1137/1125062
ISSN1095-7219
Autores Tópico(s)Matrix Theory and Algorithms
ResumoPrevious article Next article The Central Limit Theorem for the Spectrum of Random Jacobi MatricesA. Ya. ReznikovaA. Ya. Reznikovahttps://doi.org/10.1137/1125062PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] L. A. Pastur, Spectra of random Jacobi matrices and Schroedinger equations with random potentials on the whole line, 1974, preprint, FTINT AN UkSSR, Kharkov, (In Russian.) Google Scholar[2] L. A. Pastur, Spectra of random selfadjoint operators, Uspehi Mat. Nauk, 28 (1973), 3–64, (In Russian.) 53:10042 Google Scholar[3] S. V. Nagaev, Some limit theorems for stationary Markov chains, Theory Prob. Appl., 2 (1957), 378–406 LinkGoogle Scholar[4] L. Hörmander, Hypoelliptic differential equations of second order, Matematika, 12 (1968), 88–109, (In Russian.) 0156.10701 Google Scholar[5] A. V. Skorokhod, Studies in the theory of random processes, Translated from the Russian by Scripta Technica, Inc, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965viii+199 32:3082b 0146.37701 Google Scholar[6] V. I. Opoitsev, Inversion principle of contractive mappings, Uspekhi Matem. Nauk, 31 (1976), 169–198, (In Russian.) Google Scholar[7] F. V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, Vol. 8, Academic Press, New York, 1964xiv+570 31:416 0117.05806 Google Scholar[8] Harry Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377–428 29:648 0203.19102 CrossrefGoogle Scholar[9] S. A. Molchanov, Structure of the eigenfunctions of one-dimensional unordered structures, Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), 70–103, 214, (In Russian.) 58:6662 Google Scholar[10] V. N. Tutubalin, On limit theorems for the product of random matrices, Theory Prob. Appl., 10 (1965), 15–27 LinkGoogle Scholar[11] I. A. Ibragimov and , Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443– 48:1287 0219.60027 Google Scholar[12] Jacques Neveu, Mathematical foundations of the calculus of probability, Translated by Amiel Feinstein, Holden-Day Inc., San Francisco, Calif., 1965xiii+223 33:6660 0137.11301 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Szego-Type Theorems for One-Dimensional Schrodinger Operator with Random Potential (Smooth Case)25 September 2018 | Zurnal matematiceskoj fiziki, analiza, geometrii, Vol. 14, No. 3 Cross Ref On the analogues of Szegő's theorem for ergodic operators19 March 2015 | Sbornik: Mathematics, Vol. 206, No. 1 Cross Ref Аналоги теоремы Сегe для эргодических операторовМатематический сборник, Vol. 206, No. 1 Cross Ref Repartition d'etat d'un operateur de Schrödinger aleatoire Distribution empirique des valeurs propres d'une matrice de Jacobi12 September 2006 Cross Ref Limit Theorems for Random PartitionsS. A. Molchanov and A. Ya. Reznikova17 July 2006 | Theory of Probability & Its Applications, Vol. 27, No. 2AbstractPDF (1041 KB) Volume 25, Issue 3| 1981Theory of Probability & Its Applications History Submitted:19 March 1979Published online:28 July 2006 InformationCopyright © 1981 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1125062Article page range:pp. 504-513ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics
Referência(s)