MEASUREMENTS OF INTRACELLULAR CONDUCTIVITY IN APLYSIA NEURONS: EVIDENCE FOR ORGANIZATION OF WATER AND IONS
1973; Wiley; Volume: 204; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1973.tb30801.x
ISSN1749-6632
AutoresDavid O. Carpenter, Martin M. Hovey, Anthony F. Bak,
Tópico(s)Tactile and Sensory Interactions
ResumoAnnals of the New York Academy of SciencesVolume 204, Issue 1 p. 502-533 MEASUREMENTS OF INTRACELLULAR CONDUCTIVITY IN APLYSIA NEURONS: EVIDENCE FOR ORGANIZATION OF WATER AND IONS David O. Carpenter, David O. Carpenter Laboratory of Neurophysiology National Institute of Mental Health Bethesda, Maryland 20014Search for more papers by this authorMartin M. Hovey, Martin M. Hovey Laboratory of Neurophysiology National Institute of Mental Health Bethesda, Maryland 20014Search for more papers by this authorAnthony F. Bak, Anthony F. Bak Laboratory of Neurophysiology National Institute of Mental Health Bethesda, Maryland 20014Search for more papers by this author David O. Carpenter, David O. Carpenter Laboratory of Neurophysiology National Institute of Mental Health Bethesda, Maryland 20014Search for more papers by this authorMartin M. Hovey, Martin M. Hovey Laboratory of Neurophysiology National Institute of Mental Health Bethesda, Maryland 20014Search for more papers by this authorAnthony F. Bak, Anthony F. Bak Laboratory of Neurophysiology National Institute of Mental Health Bethesda, Maryland 20014Search for more papers by this author First published: March 1973 https://doi.org/10.1111/j.1749-6632.1973.tb30801.xCitations: 20AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Brinley, jr., F. J. 1965. sodium, potassium and chloride concentrations and fluxes in the isolated giant axon of homarus. i. neurophysiol. 28: 742–772. 2 Curtis, H. J. & K. S. Cole. 1938. transverse electrical impedance of the squid giant axon. j. gen. physiol. 21: 757–765. 3 Cole, K. S. 1968. membranes, ions and impulses. univ. of california press. berkeley , california . 4 Cole, K. S. & A. L. Hodgkin. 1939. membrane and protoplasm resistance in the squid giant axon. j. gen. physiol. 22: 671–687. 5 Cole, K. S. & J. W. Moore. 1960. liquid junction and membrane potentials of the squid giant axon. j. gen. physiol. 43: 971–980. 6 Carpenter, D. O., M. M. Hovey & A. F. Bak. 1971. intracellular conductance of aplysia neurons and squid axon as determined by a new technique. intern. j. neurosci. 2: 35–48. 7 Hodgkin, A. L. & R. D. Keynes. 1953. the mobility and diffusion coefficient of potassium in giant axons from sepia. j. physiol. (london) 131: 592–616. 8 Hodgkin, A. L. & R. D. Keynes. 1956. experiments on the injection of substances into squid giant axons by means of a microsyringe. j. physiol. (london) 131: 592–616. 9 Caldwell, P. C. & R. D. Keynes. 1960. the permeability of the squid giant axon to radioactive potassium and chloride ions. j. physiol. (london) 154: 177–189. 10 Hinke, J. A. M. 1961. the measurement of sodium and potassium activities in the squid axon by means of cation-selective glass micro-electrodes. j. physiol. (london) 156: 314–335. 11 Dick, D. A. T. 1959. the rate of diffusion of water in the protoplasm of living cells. exptl. cell. res. 17: 5–12. 12 Hartree, W. & A. V. Hill. 1921. the specific electrical resistance of frog's muscle. biochem. j. 15: 379–382. 13 Katz, B. 1948. the electrical properties of the muscle fiber membrane. proc. roy. soc. london, series b. 135: 506–534. 14 Harris, E. J. 1952. the exchangeability of the potassium of frog muscle studied, in phosphate media. j. physiol. (london) 117: 278–288. 15 Lev, A. A. 1964. determination of activity and activity coefficients of potassium and sodium ions in frog muscle fibres. nature 201: 1132–1134. 16 Mclaughlin, S. G. A. & J. A. M. Hinke. 1966. sodium and water binding in single striated muscle fibers of the giant barnacle. canad. j. physiol. pharm. 44: 837–848. 17 Kushmerick, M. J. & R. J. Podolsky. 1969. ionic mobility in muscle cells. science 166: 1297–1298. 18 Ling, G. N. 1962. a physical theory of the living state. blaisdell. new york , n. y. 19 Ling, G. N. & F. W. Cope. 1969. potassium ion: is the bulk of intracellular k+ absorbed science 163: 1335–1336. 20 Pauly, H. 1959. electrical conductance and dielectric constant of the interior of erythrocytes. nature 183: 333–334. 21 Pauly, H. & H. P. Schwan. 1966. dielectric properties and ion mobility in erythrocytes. biophysics j. 6: 621–639. 22 Pauly, H., L. Packer & H. P. Schwan. 1959. electrical properties of mitochondrial membranes. j. biophysic. biochem. cytol. 7: 589–601. 23 Schwan, H. P. & K. Li. 1953. capacity and conductivity of body tissues at ultrahigh frequencies. proc. i.r.e. 41: 1735–1740. 24 Pauly, H. 1963. über die elektrische kapazität der zellmembran und die leitfähigkeit des zytoplasmas von ehrlich—aszites-tumorzellen. biophysik 1: 143–153. 25 Sato, J., G. Austin, H. Yai & J. Maruhashi. 1968. the ionic permeability changes during acetylcholine-induced response of aplysia ganglion cells. j. gen. physiol. 51: 321–345. 26 Tauc, L. 1958. processes post-synaptiques d'excitation et d'inhibition dans le soma neuronique de i'aplysie et de i'escargot. arch. ital. biol. 96: 78–110. 27 Brown, A. M., J. L. Walker, jr. & R. B. Sutton. 1970. increased chloride conductance as the proximate cause of hydrogen ion effects in aplysia neurons. j. gen. physiol. 56: 559–582. 28 Kunze, D. L. & A. M. Brown. 1971. internal potassium and chloride activities and the effects of acetylcholine on identifiable aplysia neurones. nature 229: 229–231. 29 Frazier, W. T., E. R. Kandel, I. Kupfermann, R. Waziri & R. E. Coggeshall. 1967. morphological and functional properties of identified neurons in the abdominal ganglion of aplysia californica. j. neurophysiol. 30: 1288–1351. 30 Wolbarsht, M. L., E. F. Macnichol, jr. & H. G. Wagner. 1960. glass insulated platinum electrodes. science 132: 1309–1310. 31 Kinnard, M. A. & P. D. Maclean. 1967. a platinum micro-electrode for intracerebral exploration with a chronically fixed stereotaxic device. electroenceph. clin. neurophysiol. 22: 183–186. 32 Bak, A. F. 1967. testing metal micro-electrodes. electroenceph. clin. neurophysiol. 22: 186–187. 33 Li, C. L., A. F. Bak & L. O. Parker. 1968. specific resistivity of the cerebral cortex and white matter. exp. neurol. 20: 544–557. 34 Schales, O. & S. S. Schales. 1941. a simple and accurate method for determination of chloride in biological fluids. j. biol. chem. 140: 879–884. 35 Kaufman, W. & F. D. Johnston. 1943. the electrical conductivity of the tissues near the heart and its bearing on the distribution of the cardiac action currents. am. heart j. 26: 42–54. 36 Cole, K. S. & H. J. Curtis. 1950. bioelectricity: electric physiology. in medical physics, O. Glasser, ed. vol. 2: 82–90. year book publishers, inc. chicago , illinois . 37 Schwan, H. P. & C. F. Kay. 1956. specific resistance of body tissues. circ. res. 4: 664–670. 38 Bozler, E. & K. S. Cole. 1936. electric impedance and phase angle of muscle in rigor. j. cell. comp. physiol. 7: 229–241. 39 Schwan, H. 1951. elektrodenpolarisation und ihr einfluss auf die bestimmung dielektrischer eigenschaften von flüssigkeiten und biologischem material. z. natureorschg. 6b: 121–129. 40 Schwan, H. P. 1963. determination of biological impedances. in physical techniques in biological research, W. L. Nastuk, ed. vol. 6: 323–407. academic press. new york , n. y. 41 Robinson, R. A. & R. H. Stokes. 1959. electrolyte solutions. butterworths. london , england . 42 Steel, B. J., J. M. Stokes & R. H. Stokes. 1958. individual ion mobilities in mixtures of non-electrolytes and water. j. phys. chem. 62: 1514–1516. 43 Carr, C. W. 1956. studies on the binding of small ions in protein solutions with the use of membrane electrodes. vi. the binding of sodium and potassium ions in solutions of various proteins. arch. biochem. biophys. 62: 476–484. 44 Ho, C. & D. F. Wauoh. 1965. interactions of bovine α-casein with small ions. j. am. chem. soc. 87: 110–117. 45 Lewis, M. S. & H. A. Saroff. 1957. the binding of ions to the muscle proteins. measurements on the binding of potassium and sodium ions to myosin a, myosin b, and actin. j. am. chem. soc. 79: 2112–2117. 46 Fessard, A. & L. Tauc. 1956. capacité, réssistance et variations activés d'impédance d'un soma neuronique. j. physiol. (paris) 45: 541–544. 47 Loewenstein, W. R. & Y. Kanno. 1964. studies on an epithelial (gland) cell junction. i. modifications of surface membrane permeability. j. cell. biol. 22: 565–586. 48 Baird, S. L., jr, G. Karreman, H. Mueller & A. Szent-gyorgyi. 1957. ionic semipermeability as a bulk property. proc. nat. acad. sci. 43: 705–708. 49 Robertson, J. D. 1961. studies on the chemical composition of muscle tissue. ii. the abdominal flexor muscle of the lobster nephrops norvegicus. j. exptl. biol. 38: 707–728. 50 Green, K. & M. H. Friedman. 1971. potassium and calcium binding in corneal stroma and the effect on sodium binding. am. j. physiol. 221: 363–367. 51 Cope, F. W. 1967. nmr evidence for complexing of na + in muscle, kidney and brain, and by actmyosin. the relation of cellular complexing of na + to water structure and to transport kinetics. j. gen. physiol. 50: 1353–1375. 52 Martinez, D., A. A. Silvidi & R. M. Stokes. 1969. nuclear magnetic resonance studies of sodium ions in isolated frog muscle and liver. biophys. j. 9: 1256–1260. 53 Rotunno, C.a., V. Kowalewski & M. Cereijido. 1967. nuclear spin resonance evidence for the complexing of sodium in frog skin. biochim. biophys. acta 135: 170–173. 54 Ascoli, F. & C. Botre. 1961. irreversible changes of ionic activities following thermal denaturation of sodum deoxyribonucleate. j. mol. biol. 3: 202–207. 55 Naora, H., H. Naora, M. Izawa, V. G. Allfrey & A. E. Mirsky. 1962. some observations on differences in composition between the nucleus and cytoplasm of the frog oocyte. proc. nat. acad. sci. 48: 853–859. 56 Lasek, R. J. & W. J. Dower. 1971. aplysia californica: analysis of nuclear dna in individual nuclei of giant neurons. science 172: 278–280. 57 Elford, B. C. 1970. non-solvent water in muscle. nature 227: 282–283. 58 Andronikashvili, E. L., G. M. Mrevlishvili & P. L. Privalov. 1969. calorimetric investigation of the state of tissue water. in water in biological systems. L. P. Kayushin, ed.vol. 1: 67–69. consultants bureau. new york , n. y. 59 Cerbon, J. 1967. nmr studies on the water immobilization by lipid systems in vitro and in vivo. biochim. biophys. acta 144: 1–9. 60 Jacobson, B., W. A. Anderson & J. T. Arnold. 1954. a proton magnetic resonance study of the hydration of deoxyribonucleic acid. nature 173: 772–773. 61 Depireux, J. & D. Williams. 1962. influence of deoxyribonucleic acid on the intermolecular structure of water. nature 195: 699–700. 62 Kelly, F. J., R. A. Robinson & R. H. Stokes. 1961. the thermodynamics of the ternary system mannitol-sodium chloride-water at 25° from solubility and vapor pressure measurements. j. phys. chem. 65: 1958–1959. 63 Robinson, R. A. & R. H. Stokes. 1962. activity coefficients of mannitol and potassium chloride in mixed aqueous soltuions at 25°. j. phys. chem. 66: 506–507. 64 Brown, A. M., J. L. Walker, jr. & D. L. Kunze. 1971. personal communication of unpublished observations. 65 Damadian, R. 1971. tumor detection by nuclear magnetic resonance. science 171: 1151–1153. 66 Burns, V. W. 1971. Microviscosity and calcium exchange in yeast cells and effects of phenethyl alcohol. Exp, Cell Res. 64: 35–40. Citing Literature Volume204, Issue1Physicochemical State of Ions and Water in Living Tissues and Model SystemsMarch 1973Pages 502-533 ReferencesRelatedInformation
Referência(s)