Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-3
2004; Elsevier BV; Volume: 67; Issue: 10 Linguagem: Inglês
10.1016/j.bcp.2004.02.012
ISSN1873-2968
AutoresÉlise G. Lavoie, Filip Kukulski, Sébastien A. Lévesque, Joanna Lecka, Jean Sévigny,
Tópico(s)Genetics and Neurodevelopmental Disorders
ResumoWe have cloned and characterized the nucleoside triphosphate diphosphohydrolase-3 (NTPDase3) from mouse spleen. Analysis of cDNA shows an open reading frame of 1587 base pairs encoding a protein of 529 amino acids with a predicted molecular mass of 58 953 Da and an estimated isoelectric point of 5.78. The translated amino acid sequence shows the presence of two transmembrane domains, eight potential N-glycosylation sites and the five apyrase conserved regions. The genomic sequence is located on chromosome 9F4 and is comprised of 11 exons. Intact COS-7 cells transfected with an expression vector containing the coding sequence for mouse NTPDase3 hydrolyzed P2 receptor agonists (ATP, UTP, ADP and UDP) but not AMP. NTPDase3 required divalent cations (Ca2+>Mg2+) for enzymatic activity. Interestingly, the enzyme had two optimum pHs for ATPase activity (pH 5.0 and 7.4) and one for ADPase activity (pH 8.0). Consequently, the ATP/ADP and UTP/UDP hydrolysis ratios were two to four folds higher at pH 5.0 than at pH 7.4, for both, intact cells and protein extracts. At pH 7.4 mouse NTPDase3 hydrolyzed ATP, UTP, ADP and UDP according to Michaelis–Menten kinetics with apparent Kms of 11, 10, 19 and 27 μM, respectively. In agreement with the Km values, the pattern of triphosphonucleoside hydrolysis showed a transient accumulation of the corresponding diphosphonucleoside and similar affinity for uracil and adenine nucleotides. NTPDase3 hydrolyzes nucleotides in a distinct manner than other plasma membrane bound NTPDases that may be relevant for the fine tuning of the concentration of P2 receptor agonists.
Referência(s)