Artigo Acesso aberto Revisado por pares

Enrichment Cultivation of Beer-Spoiling Lactic Acid Bacteria

2011; Wiley; Volume: 117; Issue: 3 Linguagem: Inglês

10.1002/j.2050-0416.2011.tb00473.x

ISSN

2050-0416

Autores

Sanna Taskila, Jukka Kronlöf, Heikki Ojamo,

Tópico(s)

Meat and Animal Product Quality

Resumo

Journal of the Institute of BrewingVolume 117, Issue 3 p. 285-294 Free Access Enrichment Cultivation of Beer-Spoiling Lactic Acid Bacteria Sanna Taskila, Corresponding Author Sanna Taskila Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland.E-mail: [email protected]Search for more papers by this authorJukka Kronlöf, Jukka Kronlöf Hartwall Ltd., Kasaajankatu 13, P. O. Box 44, FI-15101 Lahti, Finland.Search for more papers by this authorHeikki Ojamo, Heikki Ojamo Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland.Search for more papers by this author Sanna Taskila, Corresponding Author Sanna Taskila Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland.E-mail: [email protected]Search for more papers by this authorJukka Kronlöf, Jukka Kronlöf Hartwall Ltd., Kasaajankatu 13, P. O. Box 44, FI-15101 Lahti, Finland.Search for more papers by this authorHeikki Ojamo, Heikki Ojamo Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland.Search for more papers by this author First published: 16 May 2012 https://doi.org/10.1002/j.2050-0416.2011.tb00473.xCitations: 7 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat ABSTRACT Various molecular methods have been developed for the rapid microbiological analysis of beer and brewing process samples. However, enrichment cultivation is still needed in order to reach the detection limits of the molecular assays, and it may directly contribute to the costs and accuracy of detection. The selection of proper enrichment cultivation conditions may be complex due to the wide variety of available media, and controversial reports of their performance. Therefore, this article aims to clarify this process by summarizing the main factors affecting the growth of lactic acid bacteria (LAB) in the enrichment cultures and reported media for this purpose. REFERENCES 1 Alegria, E., Lopez, I., Ruiz, J. I., Saenz, J., Fernandez, E., Zarazaga, M., Dizy, M., Torres, C. and Ruiz-Larrea, F., High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett., 2004, 230, 53– 61. 2 Amanatidou, A., Bennik, M. H. J., Gorris, L. G. M. and Smid, E. J., Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen. Arch. Microbiol., 2001, 176, 79– 88. 3 Amann, R. I., Ludwig, W. and Schleifer, K. H., Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol. Reviews, 1995, 59, 143– 169. 4 An, H., Zhou, H., Huang, Y., Wang, G., Luan, C., Mou, J., Luo, Y. and Hao Y., High-level expression of heme-dependent catalase gene katA from Lactobacillus sakei protects Lactobacillus rhamnosus from oxidative stress. Mol. Biotechnol., 2010, 45, 155– 160. 5 Andrews, G. P. and Martin S. E., Catalase activity during the recovery of heat-stressed Staphylococcus aureus Mf-31. Appl. Environ. Microbiol., 1979, 38, 390– 394. 6 Anonymous. Pediococcus damnosus medium 231. German Collection of Microorganisms and Cell Cultures. 2007. 7 Asano, S., Iijima, K., Suzuki, K., Motoyama, Y., Ogata, T. and Kitagawa, Y., Rapid detection and identification of beer-spoilage lactic acid bacteria by microcolony method. J. Biosci. Bioeng., 2009, 108, 124– 129. 8 Asano, S., Suzuki, K., Iijima, K., Motoyama, Y., Kuriyama, H. and Kitagawa Y., Effects of morphological changes in beer-spoilage lactic acid bacteria on membrane filtration in breweries. J. Biosci. Bioeng., 2007, 104, 334– 338. 9 Atlas, R., Handbook of Microbiological Media. CRC Press: Boca, Raton, Florida, 1993. 10 Back, W., Diirr, P. and Anthes, S., Naehrboeden VLB-S7 und NBB. Erfahrungen mit beiden Medien in Jahre 1983. Monatsschr. Brauwiss., 1984, 37, 126– 131. 11 Back, W., Brewery. In: Colour Atlas and Handbook of Beverage Biology. Verlag Hans Carl: Nürnberg, 2005, pp. 10– 112. 12 Back, W., Dürr, P. and Anthes, S., Nutriens VLB-S7 and NBB — Experiences with both media in 1983. Monatsschr. Brauwiss., 1984, 37, 126– 131. 13 Behr, J., Ganzle, M. G. and Vogel, R. F., Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl. Environ. Microbiol., 2006, 72, 6483– 6492. 14 Bischoff, E., Bohak, I., Back, W. and Leibhard, S., Rapid detection method of beer spoilage bacteria by PCR and universal primers. Monatsschr. Brauwiss., 2001, 54, 4– 8. 15 Boatwright, J. and Kirsop, B. H., Sucrose agar — growth medium for spoilage organisms. J. Inst. Brew., 1976, 82, 343– 346. 16 Bohak, I., Thelen, K. and Beimfohr, C., Description of Lactobacillus backi sp. nov., an obligate beer-spoiling bacterium. Monatsschr. Brauwiss., 2006, 59(3), 78– 82. 17 Brewery Convention of Japan Analysis Committee. Detection methods for contaminants in wort and beer. In: BCOJ Microbiology Methods. Brewers Association of Japan: Tokyo, 1999. 18 Carr, F. J., Chill, D. and Maida, N., The lactic acid bacteria: A literature survey. Crit. Rev. Microbiol., 2002, 28, 281– 370. 19 Chaban, B., Dobson, C. M., Whiting, M. S., Bjarnason, J. and Ziola, B., Immunoblotting used for identification of beer spoilage pediococci including the new species Pediococcus claussenii. J. Am. Soc. Brew. Chem., 2002, 60, 170– 175. 20 Cochrane, B. and O'Connor, D., Proteomic analysis of osmotic stress responses in Salmonella. HUPO First World Congress, November 21–24, Versailles, France, 2002. 21 Corsetti, A., Settanni, L., van Sinderen, D., Felis, G. E., Dellaglio, F. and Gobbetti, M., Lactobacillus rossii sp nov., isolated from wheat sourdough. Int. J. Syst. Evol. Microbiol., 2005, 55, 35– 40. 22 Crumplen, R., Bendiak, D., Curran, C., DeBruyn, L., Dowhanick, T., Hedges, P., Hjørtshøj, B. and Holmay, S., Media for lactobacilli. J. Am. Soc. Brew. Chem., 1991, 49, 174– 176. 23 Dachs, E., NBB-Nachwlismedium fuer bierschaedliche Bacterien. Brauwelt, 1981, 121, 1778– 1784. 24 De Angelis, M. and Gobbetti, M., Environmental stress responses in Lactobacillus: A review. Proteomics, 2004, 4, 106– 122. 25 de Man, J. C., Rogosa, M. and Sharpe, M. E., A medium for the cultivation of lactobacilli. J. Appl. Bacteriol., 1960, 23, 130– 135. 26 de Vries, M. C., Vaughan, E. E., Kleerebezem, M. and de Vos, W. M., Optimising single cell activity assessment of Lactobacillus plantarum by fluorescent in situ hybridisation as affected by growth. J. Microbiol. Methods, 2004, 59, 109– 115. 27 Ehrmann, M. A., Preissler, P., Danne, M. and Vogel, R. F., Lactobacillus paucivorans sp. nov., isolated from the brewery environment. Int. J. Syst. Evol. Microbiol., 2009. 28 Faraq, N. S., Gomah, A. A. and Balabel, N. M. A., False negative multiplex PCR results with certain groups of antibiotics. Plant Pathology J., 2010, 9, 73– 78. 29 Flahaut, S., Hartke, A., Giard, J. C. and Auffray, Y., Alkaline stress response in Enterococcus faecalis: Adaptation, cross-protection, and changes in protein synthesis. Appl. Environ. Microbiol., 1997, 63, 812– 814. 30 Gibb, A. P. and Wong, S., Inhibition of PCR by agar from bacteriological transport media. J. Clin. Microbiol., 1998, 36, 275– 276. 31 Götz, F., Elstner, E. F., Sedewitz, B. and Lengfelder, E., Oxygen utilization by Lactobacillus plantarum 2. Superoxide and superoxide dismutation. Arch. Microbiol., 1980, 125, 215– 220. 32 Haakensen, M., Dobson, C. M., Deneer, H. and Ziola B., Real-time PCR detection of bacteria belonging to the Firmicutes Phylum. Int. J. Food Microbiol., 2008, 125, 236– 241. 33 Haakensen, M., Schubert, A. and Ziola, B., Multiplex PCR for putative Lactobacillus and Pediococcus beer-spoilage genes and ability of gene presence to predict growth in beer. J. Am. Soc. Brew. Chem., 2008, 66, 63– 70. 34 Haakensen, M., Schubert, A. and Ziola, B., Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates. Int. J. Food Microbiol., 2009, 130, 56– 60. 35 Haakensen, M. and Ziola, B., Identification of novel horA-harbouring bacteria capable of spoiling beer. Can. J. Microbiol., 2008, 54, 321– 325. 36 Haakensen, M. C., Butt, L., Chaban, B., Deneer, H., Ziola, B. and Dowgiert, T., horA-Specific real-time PCR for detection of beer-spoilage lactic acid bacteria. J. Am. Soc. Brew. Chem., 2007, 65, 157– 165. 37 Hage, T., Kennedy, A., Orive, M., Sbuelz, R., Storgårds, E. and Vogeser, G., EBC Analytica Microbiologica CD-ROM. Verlag Hans Carl: Nürnberg, 2005. 38 Hahm, B. K. and Bhunia, A. K., Effect of environmental stresses on antibody-based detection of Escherichia coli O157: H7, Salmonella enterica serotype Enteritidis and Listeria monocytogenes. J. Appl. Microbiol., 2006, 100, 1017– 1027. 39 Hammes, W. P., Weiss, N. and Holzapfel, W. H., The genera Lactobacillus and Carnobacterium. In: The Prokaryotes 2nd ed. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications Vol. 2. A. Balows, H. G. Truper, M. Dworkin, W. Harder, K. H. Schleifer, Eds., Springer Verlag: New York, 1992, pp. 1535– 1594. 40 Hammond, J., Brennan, M. and Price, A., The control of microbial spoilage of beer. J. Inst. Brew., 1999, 105, 113– 120. 41 Henriksson, E. and Haikara, A., Airborne microorganisms in the brewery filling area and their effect on microbiological stability of beer. Monatsschr. Brauwiss., 1991, 44, 4– 8. 42 Hollerova, I. and Kubizniakova, P., Monitoring Gram positive bacterial contamination in Czech breweries. J. Inst. Brew., 2001, 107, 355– 358. 43 Holzapfel, W. H., Culture Media for non-sporulating Gram-positive food spoilage bacteria. Int. J. Food Microbiol., 1992, 17, 113– 133. 44 Huhtamella, S., Leinonen, M., Nieminen, T., Fahnert, B., Myllykoski, L., Breitenstein, A. and Neubauer, P., RNA-based sandwich hybridisation method for detection of lactic acid bacteria in brewery samples. J. Microbiol. Methods, 2007, 68, 543– 553. 45 Jespersen, L. and Jakobsen, M., Specific spoilage organisms in breweries and laboratory media for their detection. Int. J. Food Microbiol., 1996, 139– 155. 46 Juvonen, R., Partanen, T. and Koivula, T., Evaluation of reverse-transcription PCR detection of 16S rRNA and tuf mRNA for viable/dead discrimination of beer-spoilage lactic acid bacteria. J. Am. Soc. Brew. Chem., 2010, 68, 101– 106. 47 Juvonen, R., Satokari, R., Mallison, K. and Haikara, A., Detection of spoilage bacteria in beer by polymerase chain reaction. J. Am. Soc. Brew. Chem., 1999, 57, 99– 103. 48 Kobayashi, H., Miyamoto, T., Hashimoto, Y., Kiriki, M., Motomatsu, A., Honjoh, K. and Lio, M., Identification of factors involved in recovery of heat-injured Salmonella Enteritidis. J. Food Prot., 2005, 68, 932– 941. 49 Lee, S. Y., Jandgaard, O. and Coors, J. H., Lee's Multi-Differential Agar (LMDA); a culture medium for enumeration and identification of brewing bacteria. J. Am. Soc. Brew. Chem., 1975, 33, 18– 25. 50 March, C., Manclus, J. J., Abad, A., Navarro, A. and Montoya, A., Rapid detection and counting of viable beer-spoilage lactic acid bacteria using a monoclonal chemiluminescence enzyme immunoassay and a CCD camera. J. Immunol. Methods, 2005, 303, 92– 104. 51 Menz, G., Andrighetto, C., Lombardi, A., Corich, V., Aldred, P. and Vriesekoop, F., Isolation, identification, and characterisation of beer-spoilage lactic acid bacteria from microbrewed beer from Victoria, Australia. J. Inst. Brew., 2010, 116, 14– 22. 52 Moneke, A. N., Okolo, B. N., Odo, G. C. and Ire, F. S., Screening of malting sorghum samples for lactic acid bacteria with potentials for antimicrobial activity. Afr. J. Biotechnol., 2009, 8, 2821– 2829. 53 Murphy, M. G. and Condon, S., Comparison of aerobic and anaerobic growth of Lactobacillus plantarum in a glucose medium. Arch. Microbiol., 1984, 138, 49– 53. 54 Nakagawa, T., Shimada, M., Mukai, H., Asada, K., Kato, I., Fujino, K. and Sato, T., Detection of alcohol-tolerant hiochi bacteria by PCR. Appl. Environ. Microbiol., 1994, 60, 637– 640. 55 Nakakita, Y., Takahashi, T., Tsuchiya, Y., Watari, J. and Shinotsuka, K., A strategy for detection of all beer-spoilage bacteria. J. Am. Soc. Brew. Chem., 2002, 60, 63– 67. 56 Narendranath, N. V., Hynes, S. H., Thomas, K. C. and Ingledew, W. M., Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl. Environ. Microbiol., 1997, 63, 4158– 4163. 57 Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T. and Haikara, A., New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol., 1999, 86, 29– 35. 58 Nishikawa, N. and Kohgo, M., Microbial control in the brewery. Tech. Q. Master Brew. Assoc. Am., 1985, 22, 61– 66. 59 O'Sullivan, T. F., Walsh, Y., O'Mahony, A., Fitzgerald, G. F. and van Sinderen, D., A comparative study of malthouse and brewhouse microflora. J. Inst. Brew., 1999, 105, 55– 61. 60 Parente, E., Ciocia, F., Ricciardi, A., Zotta, T., Felis, G. E. and Torriani, S., Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: A multivariate screening study. Int. J. Food Microbiol., 2010, 144, 270– 279. 61 Payne, M. J. and Kroll, R. G., Methods for the separation and concentration of bacteria from foods. Trends Food Sci. Tech., 1991, 2, 315. 62 Pittet, V., Haakensen, M. and Ziola, B., Rapid screening for Gram-negative and gram-positive beer-spoilage firmicutes using a real-time multiplex PCR. J. Am. Soc. Brew. Chem., 2010, 68, 89– 95. 63 Preissler, P., Behr, J. and Vogel, R. F., Detection of beer-spoilage Lactobacillus brevis strains by reduction of resazurin. J. Inst. Brew., 2010, 116, 399– 404. 64 Priest, F., Gram-positive brewery bacteria. In: Brewing Microbiology. F. Priest and I. Campbell, Eds., Kluwer Academic/Plenum Publishers: New York, 2003, pp. 181– 218. 65 Raccach, M., Pediococci and biotechnology. Crit. Rev. Microbiol., 1987, 14, 291– 309. 66 Ramnani, P., Jarvis, B. and Mackey, B., Comparison between pre-enrichment in single- or double-strength buffered peptone water for recovery of Salmonella enterica serovar Typhimurium DT104 from acidic marinade sauces containing spices. Food Control, 2010, 21, 1303– 1306. 67 Saha, R. B., Sondag, R. J. and Middlekauff, J. E., An improved medium for the selective culturing of lactic acid bacteria. J. Am. Soc. Brew. Chem., 1974, 32, 9– 10. 68 Sakamoto, K. and Konings, W. N., Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol., 2003, 89, 105– 124. 69 Sakamoto, K., Margolles, A., van Veen, H. W. and Konings, W. N., Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J. Bacteriol., 2001, 183, 5371– 5375. 70 Satokari, R., Juvonen, R., Mallison, K., von Wright, A. and Haikara, A., Detection of beer spoilage bacteria Megasphaera and Pectinatus by polymerase chain reaction and colorimetric microplate hybridization. Int. J. Food Microbiol., 1998, 45, 119– 127. 71 Sedewitz, B., Schleifer, K. H. and Gotz, F., Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J. Bacteriol., 1984, 160, 462– 465. 72 Shintani, H., Importance of considering injured microorganisms in sterilization validation. Biocontrol Sci., 2006, 11, 91– 106. 73 Simpson, W. J. and Taguchi, H., The genus Pediococci, with notes on the genera Tetratogenococcus and Aerococcus. In: The Genera of Lactic Acid Bacteria, Vol. 2, Aspen Publishers: Gaithersburg, 1995, pp. 125– 172. 74 Skytta, E., Haikarav, A. and Mattila-Sandholmv, T., Production and characterization of antibacterial compounds produced by Pediococcus damnosus and Pediococcus pentosaceus. J. Appl. Bacteriol., 1993, 74, 134– 142. 75 Smelt, J. P. P. M. and Haasv, H., Behavior of proteolytic Clostridium botulinum type-A and type-B near lower temperature limits of growth. Eur. J. Appl. Microbiol., 1978, 5, 143– 154. 76 Smelt, J. P. P. M., Otten, G. D. and Bos, A. P., Modelling the effect of sublethal injury on the distribution of the lag times of individual cells of Lactobacillus plantarum. Int. J. Food Microbiol., 2002, 73, 207– 212. 77 Stevens, K. A. and Jaykus, L. A., Bacterial separation and concentration from complex sample matrices: A review. Crit. Rev. Microbiol., 2004, 30, 7– 24. 78 Storgårds, E., Suihko, M. L., Pot, B., Vanhonacker, K., Janssens, D., Broomfield, P. L. E. and Banks, J. G., Detection and identification of Lactobacillus lindneri from brewery environments. J. Inst. Brew., 1998, 104, 47– 54. 79 Suzuki, K., Asano, S., Iijima, K. and Kitamoto, K., Sake and beer spoilage lactic acid bacteria — a review. J. Inst. Brew., 2008, 114, 209– 223. 80 Suzuki, K., Asano, S., Iijima, K., Kuriyama, H. and Kitagawa, Y., Development of detection medium for hard-to-culture beer-spoilage lactic acid bacteria. J. Appl. Microbiol., 2008, 104, 1458– 1470. 81 Suzuki, K., Funahashi, W., Koyanagi, M. and Yamashita, H., Lactobacillus paracollinoides sp nov., isolated from brewery environments. Int. J. Syst. Evol. Microbiol., 2004, 54, 115– 117. 82 Suzuki, K., Iijima, K., Asano, S., Kuriyama, H. and Kitagawa, Y., Induction of viable but nonculturable state in beer spoilage lactic acid bacteria. J. Inst. Brew., 2006, 112, 295– 301. 83 Suzuki, K., Koyanagi, M. and Yamashita, H., Genetic characterization and specific detection of beer-spoilage Lactobacillus sp LA2 and related strains. J. Appl. Microbiol., 2004, 96, 677– 683. 84 Suzuki, K., Sami, M., Iijima, K., Ozaki, K. and Yamashita, H., Characterization of horA and its flanking regions of Pediococcus damnosus ABBC478 and development of more specific and sensitive horA PCR method. Lett. Appl. Microbiol., 2006, 42, 392– 399. 85 Suzuki, K., Sami, M., Kadokura, H., Nakajima, H. and Kitamoto, K., Biochemical characterization of horA-independent hop resistance mechanism in Lactobacillus brevis. Int. J. Food Microbiol., 2002, 76, 223– 230. 86 Taguchi, H., Ohkochi, M., Uehara, H., Kojima, K. and Mawatari, M., KOT medium, a new medium for the detection of beer spoilage lactic acid bacteria. J. Am. Soc. Brew. Chem., 1990, 48, 72– 75. 87 Takahashi, T., Nakakita, Y., Watari, J. and Shinotsuka, K., Application of a bioluminescence method for the beer industry: Sensitivity of MicroStar (TM)-RMDS for detecting beer-spoilage bacteria. Biosci. Biotech. Bioch., 2000, 64, 1032– 1037. 88 Tanasupawat, S. and Daengsubha, W., Pediococcus species and related bacteria found in fermented foods and related materials in Thailand. J. Gen. Appl. Microbiol., 1983, 29, 487– 506. 89 Taskila, S., Improved enrichment cultivation of selected food-contaminating bacteria. Acta Universitatis Ouluensis Technica C 370. Doctoral Thesis/Dissertation. Faculty of Technology, Department of Process and Environmental Engineering, University of Oulu, 2010. 90 Taskila, S., Neubauer, P., Tuomola, M., Breitenstein, A., Kronlöf, J. and Hillukkala, T., Improved enrichment cultivation of beer spoiling lactic acid bacteria by continuous glucose addition to the culture. J. Inst. Brew., 2009, 115, 177– 182. 91 Taskila, S., Tuomola, M., Kronlöf, J. and Neubauer, P., Comparison of enrichment media for routine detection of beer spoiling lactic acid bacteria and development of trouble-shooting medium for Lactobacillus backi. J. Inst. Brew., 2010, 116, 151– 156. 92 Taskila, S., Tuomolav, M., Kronlöf, J., Ruuska, J. and Neubauer, P., Preliminary applications of response surface modelling to the evaluation of optimal growth conditions for beer-spoiling Pediococcus damnosus. J. Inst. Brew., 2010, 116, 211– 214. 93 Tharmaraj, N. and Shah, N. P., Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. J. Dairy Sci., 2003, 86, 2288– 2296. 94 Thelen, K., Beimfohr, C., Munich, I., Bohak, I. and Back, W., Specific rapid detection method for beer-spoilage bacteria using fluorescence-marked gene probes. Brauwelt International, 2002, 3, 155– 159. 95 Thelen, K., Beimfohr, C. and Snaidr, J., VIT-Bier: The rapid and easy detection method for beer-spoiling bacteria. Tech. Q. Master Brew. Assoc. Am., 2004, 41, 115– 119. 96 Thelen, K., Beimfohr, C. and Snaidr, J., Evaluation study of the frequency of different beer-spoiling bacteria using the VIT analysis. Tech. Q. Master Brew. Assoc. Am., 2006, 43, 31– 35. 97 Tholozan, J. L., Membré, J. M. and Grivet, J. P., Physiology and development of Pectinatus cerevisiiphilus and Pectinatus frisingensis, two strict anaerobic beer spoilage bacteria. Int. J. Food Microbiol., 1997, 18, 29– 39. 98 Timke, M., Wang-Lieu, N. Q., Altendorf, K. and Lipski, A., Fatty acid analysis and spoilage potential of biofilms from two breweries. J. Appl. Microbiol., 2005, 99, 1108– 1122. 99 Tsuchiya, Y., Nakakita, Y., Watari, J. and Shinotsuka, K., Monoclonal antibodies specific for the beer-spoilage ability of lactic acid bacteria. J. Am. Soc. Brew. Chem., 2000, 58, 89– 93. 100 Tsuchiya, Y., Ogawa, M., Nakakita, Y., Nara, Y., Kaneda, H., Watari, J., Minekawa, H. and Soejima, T., Identification of beer-spoilage microorganisms using the loop-mediated isothermal amplification method. J. Am. Soc. Brew. Chem., 2007, 65, 77– 80. 101 van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D. and Maguin, E., Stress responses in lactic acid bacteria. Anton. Leeuw. Int. J. G., 2002, 82, 187– 216. 102 Weber, D. G., Sahm, K., Polen, T., Wendisch, V. F. and Antranikian, G., Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. J. Appl. Microbiol., 2008, 105, 951– 962. 103 Weiss, N., Seidel, H. and Back, W., Isolation and systematic identification of Gram-negative bacteria which are harmful to beer. 1. Gram-negative cocci which are strictly anaerobic. Monatsschr. Brauwiss., 1979, 32, 189– 194. 104 Whiting, M., Crichlow, M., Ingledew, W. M. and Ziola, B., Detection of Pediococcus spp. in brewing yeast by a rapid immunoassay. Appl. Environ. Microbiol., 1992, 58, 713– 716. 105 Whiting, M. S., Gares, S. L., Ingledew, W. M. and Ziola, B., Brewing spoilage lactobacilli detected using monoclonal antibodies to bacterial surface antigens. Can. J. Microbiol., 1999, 45, 51– 58. 106 Wibowo, D., Eschenbruch, R., Davis, C. R., Fleet, G. H. and Lee, T. H., Occurrence and growth of lactic acid bacteria in wine — a review. Am. J. Enol. Viticult., 1985, 36, 302– 313. 107 Wijtzes, T., deWit, J. C., Intveld, J. H. J. H., Vantriet, K. and Zwietering, M. H., Modeling bacterial-growth of Lactobacillus curvatus as a function of acidity and temperature. Appl. Environ. Microbiol., 1995, 61, 2533– 2539. 108 Wu, V. C. H., A review of microbial injury and recovery methods in food. Food Microbiol., 2008, 25, 735– 744. 109 Yasui, T., Okamoto, T. and Taguchi, H., A specific oligonucleotide primer for the rapid detection of Lactobacillus lindneri by polymerase chain reaction. Can. J. Microbiol., 1997, 43, 157– 163. 110 Ziola, B., Ulmer, M., Bueckert, J., Giesbrecht, D. and Lee, S. Y., Monoclonal antibodies showing surface reactivity with Lactobacillus and Pediococcus beer spoilage bacteria. J. Am. Soc. Brew. Chem., 2000, 58, 63– 68. 111 Zotta, T., Parente, E. and Ricciardi, A., Viability staining and detection of metabolic activity of sourdough lactic acid bacteria under stress conditions. World J. Microb. Biotech., 2009, 25, 1119– 1124. 112 Zwietering, M. H., Dekoos, J. T., Hasenack, B. E., deWit, J. C. and Vantriet, K., Modeling of bacterial-growth as a function of temperature. Appl. Environ. Microbiol., 1991, 57, 1094– 1101. 113 Zwietering, M. H., deWit, J. C., Cuppers, H. G. A. M. and Vantriet, K., Modeling of bacterial-growth with shifts in temperature. Appl. Environ. Microbiol., 1994, 60, 204– 213. Citing Literature Volume117, Issue32011Pages 285-294 ReferencesRelatedInformation

Referência(s)