Artigo Revisado por pares

Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers: Observations with the international ultraviolet explorer

1987; Elsevier BV; Volume: 72; Issue: 2 Linguagem: Inglês

10.1016/0019-1035(87)90180-1

ISSN

1090-2643

Autores

Robert M. Nelson, Arthur L. Lane, D. L. Matson, G. J. Veeder, B. J. Buratti, E. F. Tedesco,

Tópico(s)

Isotope Analysis in Ecology

Resumo

We present the results of an 8-year program of spectrophometry of the Galilean satellites of Jupiter that was undertaken using the International Ultraviolet Explorer (IUE) Spacecraft. The ultraviolet geometric albedos of all four satellites are low. This is consistent with the hypothesis that sulfurous materials escaping from the surface of Io are being distributed by magnetospheric processes to the surfaces of the other three objects. Although iron bearing silicates may also cause UV darkening, these materials also have spectral features in the visible region of the spectrum which are not found in the spectra of the Galilean satellites. For Io, we find that the ultraviolet geometric albedo is very low (Puv ∼ 0.04). The trailing hemisphere has an albedo that is higher than that of the leading hemisphere. This is opposite of what is observed at visual wavelengths. The decrease of albedo shortward of 0.33 μm is consistent with groundbased observations (Nelson and Hapke, 1978) and the laboratory reflection spectrum of sulfur dioxide frost. The hemispheric albedo asymmetry is consistent with a variable distribution of the frost, it being present in greater abundance on Io's leading hemisphere. The strenght of this feature has not changed with respect to longitude over the8 years of this study. The phase coefficients and opposition surges at ultraviolet wavelenghts indicate that Io's surface regolith is very porous. Europa has the highest ultraviolet albedo of all the Galilean satellites (Puv ∼ 0.2). This not inconsistent with the hypothesis of recent resurfacing. However, this albedo is not high enough to be consistent with a surface of pure water ice. We confirm a previously reported ultraviolet spectral asymmetry between Europa's leading and trailing hemispheres. The new data are consistent with the previous analyses which interpreted this as the spectral signature of sulfur ions from the Jovian magnetosphere which had been embedded preferentially on the trailing side of Europa's predominately water ice.surface. The opposition surge observed for Europa's trailing side is greater than that for the leading side. This implies that the trailing side is less compact than the leading side, perhaps due to gardening from the ion implantation process. Ganymede's ultraviolet albedo (Puv ∼ 0.10) is lower than Europa's. Ganymede has an ultraviolet spectral asymmetry that is similar to Europa's for wavelenghts longer than 0.28 μm. However, at wavelengths shorter than 0.28 μm, the two objects have different opposite hemispherical spectral ratios, indicating that the same mechanism cannot be used to explain the ultraviolet spectral albedo of both objects. One possible explanation is that ozone is present in addition to sulfur embedded on Ganymede's surface. The ultraviolet albedo and opposite hemispherical spectral ratio of Calisto is spectrally flat, indicating that the surface is covered by a material that is spectrally absorbing in the ultraviolet but has no change in absorption at the ultraviolet wavelenghts. The orbital phase variation in the ultraviolet indicates that the absorber is assymmetrically distributed in longitude.

Referência(s)
Altmetric
PlumX