Artigo Revisado por pares

N -acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis

1991; Royal Society; Volume: 245; Issue: 1312 Linguagem: Inglês

10.1098/rspb.1991.0084

ISSN

1471-2954

Autores

Barbara H. Knowles, Peter J. Knight, David J. Ellar,

Tópico(s)

Entomopathogenic Microorganisms in Pest Control

Resumo

Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Knowles Barbara H. , Knight Peter J. K. and Ellar David J. 1991N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensisProc. R. Soc. Lond. B.24531–35http://doi.org/10.1098/rspb.1991.0084SectionRestricted accessArticleN-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis Barbara H. Knowles Google Scholar Find this author on PubMed Search for more papers by this author , Peter J. K. Knight Google Scholar Find this author on PubMed Search for more papers by this author and David J. Ellar Google Scholar Find this author on PubMed Search for more papers by this author Barbara H. Knowles Google Scholar Find this author on PubMed , Peter J. K. Knight Google Scholar Find this author on PubMed and David J. Ellar Google Scholar Find this author on PubMed Published:22 July 1991https://doi.org/10.1098/rspb.1991.0084AbstractProteins synthesized by the bacterium Bacillus thuringiensis are potent insecticides. When ingested by susceptible larvae they rapidly lyse epithelial cells lining the midgut. In vitro the toxins lyse certain insect cell lines and show saturable, high-affinity binding to brush-border membrane vesicles (bbmvs) prepared from insect midguts. We observed that the sugar V-acetyl galactosamine (GalNAc) specifically decreased the cytolytic activity of a CrylA (c) toxin towards Choristoneura fumiferana CF1 cells, completely abolished toxin binding to Manduca sexta bbmvs, partially inhibited binding to Heliothis virescens bbmvs and had no apparent effect on binding to Pieris brassicae bbmvs. In ligand blotting experiments the toxin bound proteins of 120 kDa in M . sexta, 125 kDa in P. brassicae and numerous proteins in H. zea. Toxin binding to these proteins was specifically inhibited by GalNAc. The toxin binding proteins of M . sexta and H. zea also bound the lectin soybean agglutinin. Taken together these findings suggest that V-acetyl galactosamine might be a component of a CrylA (c) toxin receptor of CF1 cells and of at least two of the insects tested.FootnotesThis text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Mishra R, Arora A, Jiménez J, dos Santos Tavares C, Banerjee R, Panneerselvam S and Bonning B (2022) Bacteria-derived pesticidal proteins active against hemipteran pests, Journal of Invertebrate Pathology, 10.1016/j.jip.2022.107834, 195, (107834), Online publication date: 1-Nov-2022. Alam I, Batool K, Idris A, Tan W, Guan X and Zhang L (2022) Role of Lectin in the Response of Aedes aegypti Against Bt Toxin, Frontiers in Immunology, 10.3389/fimmu.2022.898198, 13 Pohare M, Wagh S and Udayasuriyan V (2021) Bacillus thuringiensis as Potential Biocontrol Agent for Sustainable Agriculture Current Trends in Microbial Biotechnology for Sustainable Agriculture, 10.1007/978-981-15-6949-4_18, (439-468), . Vílchez S (2020) A Tribute to a Bacillus thuringiensis Master: Professor David J. Ellar, Toxins, 10.3390/toxins12120764, 12:12, (764) AmbuAli A, Monaghan S, Al-Adawi K, Al-Kindi M and Bron J (2019) Histological and histochemical characterisation of glands associated with the feeding appendages of Argulus foliaceus (Linnaeus, 1758), Parasitology International, 10.1016/j.parint.2018.12.002, 69, (82-92), Online publication date: 1-Apr-2019. Coates B and Siegfried B (2015) Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin, Insect Biochemistry and Molecular Biology, 10.1016/j.ibmb.2015.06.003, 63, (86-96), Online publication date: 1-Aug-2015. Sengupta A, Sarkar A, Priya P, Ghosh Dastidar S, Das S and Jurat-Fuentes J (2013) New Insight to Structure-Function Relationship of GalNAc Mediated Primary Interaction between Insecticidal Cry1Ac Toxin and HaALP Receptor of Helicoverpa armigera, PLoS ONE, 10.1371/journal.pone.0078249, 8:10, (e78249) Fiuza L, Knaak N, da Silva R and Henriques J (2013) Receptors and Lethal Effect of Bacillus thuringiensis Insecticidal Crystal Proteins to the Anticarsia gemmatalis (Lepidoptera, Noctuidae) , ISRN Microbiology, 10.1155/2013/940284, 2013, (1-7), Online publication date: 30-Sep-2013. Coates B, Sumerford D, Lopez M, Wang H, Fraser L, Kroemer J, Spencer T, Kim K, Abel C, Hellmich R and Siegfried B (2011) A single major QTL controls expression of larval Cry1F resistance trait in Ostrinia nubilalis (Lepidoptera: Crambidae) and is independent of midgut receptor genes, Genetica, 10.1007/s10709-011-9590-0, 139:8, (961-972), Online publication date: 1-Aug-2011. KITAMI M, KADOTANI T, NAKANISHI K, ATSUMI S, HIGURASHI S, ISHIZAKA T, WATANABE A and SATO R (2014) Bacillus thuringiensis Cry Toxins Bound Specifically to Various Proteins via Domain III, Which Had a Galactose-Binding Domain-Like Fold , Bioscience, Biotechnology, and Biochemistry, 10.1271/bbb.100689, 75:2, (305-312), Online publication date: 23-Feb-2011. Ferreira L, Romão T, Pompílio de-Melo-Neto O and Silva-Filha M (2010) The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored α-glucosidase, which does not bind to the insecticidal binary toxin, Insect Biochemistry and Molecular Biology, 10.1016/j.ibmb.2010.05.007, 40:8, (604-610), Online publication date: 1-Aug-2010. Pandey S, Joshi B and Tiwari L (2009) Histopathological changes in the midgut of Spodoptera litura larvae on ingestion of Bacillus thuringiensis delta endotoxin , Archives Of Phytopathology And Plant Protection, 10.1080/03235400601121497, 42:4, (376-383), Online publication date: 1-Apr-2009. Hammerschmidt K and Kurtz J (2009) Chapter 5 Ecological Immunology of a Tapeworms' Interaction with its Two Consecutive Hosts Natural History of Host-Parasite Interactions, 10.1016/S0065-308X(08)00605-2, (111-137), . Kittur F, Yu H, Bevan D and Esen A (2008) Homolog of the maize -glucosidase aggregating factor from sorghum is a jacalin-related GalNAc-specific lectin but lacks protein aggregating activity, Glycobiology, 10.1093/glycob/cwn132, 19:3, (277-287) Rodrigo-Simón A, Caccia S and Ferré J (2008) Bacillus thuringiensis Cry1Ac Toxin-Binding and Pore-Forming Activity in Brush Border Membrane Vesicles Prepared from Anterior and Posterior Midgut Regions of Lepidopteran Larvae , Applied and Environmental Microbiology, 10.1128/AEM.02827-07, 74:6, (1710-1716), Online publication date: 15-Mar-2008. Lin Y, Fang G and Cai F (2007) The insecticidal crystal protein Cry2Ab10 from Bacillus thuringiensis: cloning, expression, and structure simulation, Biotechnology Letters, 10.1007/s10529-007-9572-6, 30:3, (513-519), Online publication date: 1-Mar-2008. Anilkumar K, Rodrigo-Simón A, Ferré J, Pusztai-Carey M, Sivasupramaniam S and Moar W (2008) Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie) , Applied and Environmental Microbiology, 10.1128/AEM.01612-07, 74:2, (462-469), Online publication date: 15-Jan-2008. Coates B, Sumerford D, Hellmich R and Lewis L (2007) A β-1,3-galactosyltransferase and brainiac/bre5 homolog expressed in the midgut did not contribute to a Cry1Ab toxin resistance trait in Ostrinia nubilalis, Insect Biochemistry and Molecular Biology, 10.1016/j.ibmb.2006.12.008, 37:4, (346-355), Online publication date: 1-Apr-2007. Ng T (2006) Chapter 16 Naturally occurring anti-insect proteins: current status and future aspects Naturally Occurring Bioactive Compounds, 10.1016/S1572-557X(06)03016-9, (405-422), . Hammerschmidt K and Kurtz J (2005) Surface carbohydrate composition of a tapeworm in its consecutive intermediate hosts: Individual variation and fitness consequences, International Journal for Parasitology, 10.1016/j.ijpara.2005.08.011, 35:14, (1499-1507), Online publication date: 1-Dec-2005. Mehlo L, Gahakwa D, Nghia P, Loc N, Capell T, Gatehouse J, Gatehouse A and Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops, Proceedings of the National Academy of Sciences, 10.1073/pnas.0502871102, 102:22, (7812-7816), Online publication date: 31-May-2005. Boonserm P, Davis P, Ellar D and Li J (2005) Crystal Structure of the Mosquito-larvicidal Toxin Cry4Ba and Its Biological Implications, Journal of Molecular Biology, 10.1016/j.jmb.2005.02.013, 348:2, (363-382), Online publication date: 1-Apr-2005. Vílchez S, Jacoby J and Ellar D (2004) Display of Biologically Functional Insecticidal Toxin on the Surface of λ Phage, Applied and Environmental Microbiology, 10.1128/AEM.70.11.6587-6594.2004, 70:11, (6587-6594), Online publication date: 1-Nov-2004. Jurat-Fuentes J and Adang M (2004) Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae, European Journal of Biochemistry, 10.1111/j.1432-1033.2004.04238.x, 271:15, (3127-3135) Estela A, Escriche B and Ferré J (2004) Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae) , Applied and Environmental Microbiology, 10.1128/AEM.70.3.1378-1384.2004, 70:3, (1378-1384), Online publication date: 1-Mar-2004. Huffman D, Bischof L, Griffitts J and Aroian R (2004) Pore worms: Using Caenorhabditis elegans to study how bacterial toxins interact with their target host, International Journal of Medical Microbiology, 10.1078/1438-4221-00303, 293:7-8, (599-607), . Knight P, Carroll J and Ellar D (2004) Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin, Insect Biochemistry and Molecular Biology, 10.1016/j.ibmb.2003.09.007, 34:1, (101-112), Online publication date: 1-Jan-2004. Yudina T, Konukhova A, Revina L, Kostina L, Zalunin I and Chestukhina G (2003) Antibacterial activity of Cry- and Cyt-proteins from Bacillus thuringiensis ssp. israelensis , Canadian Journal of Microbiology, 10.1139/w03-007, 49:1, (37-44), Online publication date: 1-Jan-2003. Ellar D (2003) Investigation and Development of Bacillus thuringiensis Insecticidal Proteins for Expression in Transgenic Plants Plant Biotechnology 2002 and Beyond, 10.1007/978-94-017-2679-5_19, (119-129), . Gill M and Ellar D (2002) Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1, Insect Molecular Biology, 10.1046/j.1365-2583.2002.00373.x, 11:6, (619-625), Online publication date: 1-Dec-2002. Jurat-Fuentes J, Gould F and Adang M (2002) Altered Glycosylation of 63- and 68-Kilodalton Microvillar Proteins in Heliothis virescens Correlates with Reduced Cry1 Toxin Binding, Decreased Pore Formation, and Increased Resistance to Bacillus thuringiensis Cry1 Toxins , Applied and Environmental Microbiology, 10.1128/AEM.68.11.5711-5717.2002, 68:11, (5711-5717), Online publication date: 1-Nov-2002. Basseri H, Tew I and Ratcliffe N (2002) Identification and distribution of carbohydrate moieties on the salivary glands of Rhodnius prolixus and their possible involvement in attachment/invasion by Trypanosoma rangeli, Experimental Parasitology, 10.1016/S0014-4894(02)00026-7, 100:4, (226-234), Online publication date: 1-Apr-2002. Sun M, Zhang L and Yu Z (2002) Molecular Biology of Bacillus Thuringiensis Advances in Microbial Control of Insect Pests, 10.1007/978-1-4757-4437-8_2, (15-40), . Sangadala S, Azadi P, Carlson R and Adang M (2001) Carbohydrate analyses of Manduca sexta aminopeptidase N, co-purifying neutral lipids and their functional interactions with Bacillus thuringiensis Cry1Ac toxin, Insect Biochemistry and Molecular Biology, 10.1016/S0965-1748(01)00086-8, 32:1, (97-107), Online publication date: 1-Dec-2001. Wilkins S and Billingsley P (2001) Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston, Insect Biochemistry and Molecular Biology, 10.1016/S0965-1748(01)00040-6, 31:10, (937-948), Online publication date: 1-Sep-2001. Gómez I, Oltean D, Gill S, Bravo A and Soberón M (2001) Mapping the Epitope in Cadherin-like Receptors Involved inBacillus thuringiensis Cry1A Toxin Interaction Using Phage Display, Journal of Biological Chemistry, 10.1074/jbc.M103007200, 276:31, (28906-28912), Online publication date: 1-Aug-2001. Valaitis A, Jenkins J, Lee M, Dean D and Garner K (2001) Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that bindsBacillus thuringiensis Cry1A toxins with high affinity, Archives of Insect Biochemistry and Physiology, 10.1002/arch.1028, 46:4, (186-200), Online publication date: 1-Apr-2001. Lightwood D, Ellar D and Jarrett P (2000) Role of Proteolysis in Determining Potency of Bacillus thuringiensis Cry1Ac δ-Endotoxin , Applied and Environmental Microbiology, 10.1128/AEM.66.12.5174-5181.2000, 66:12, (5174-5181), Online publication date: 1-Dec-2000. Jenkins J, Lee M, Valaitis A, Curtiss A and Dean D (2000) Bivalent Sequential Binding Model of a Bacillus thuringiensis Toxin to Gypsy Moth Aminopeptidase N Receptor, Journal of Biological Chemistry, 10.1074/jbc.275.19.14423, 275:19, (14423-14431), Online publication date: 1-May-2000. Matsumoto N (2000) Effect of Three Defatted Soybean Meals on Insecticidal Activity of Bacillus thuringiensis Formulation., Japanese Journal of Applied Entomology and Zoology, 10.1303/jjaez.2000.113, 44:2, (113-118), . Garczynski S and Adang M (2000) Investigations of Bacillus thuringiensis Cry1 toxin receptor structure and function Entomopathogenic Bacteria: from Laboratory to Field Application, 10.1007/978-94-017-1429-7_10, (181-197), . Jenkins J and Dean D (2000) Exploring the Mechanism of Action of Insecticidal Proteins by Genetic Engineering Methods Genetic Engineering, 10.1007/978-1-4615-4199-8_4, (33-54), . Jenkins J, Lee M, Sangadala S, Adang M and Dean D (1999) Binding of Bacillus thuringiensis Cry1Ac toxin to Manduca sexta aminopeptidase-N receptor is not directly related to toxicity , FEBS Letters, 10.1016/S0014-5793(99)01559-8, 462:3, (373-376), Online publication date: 3-Dec-1999. Akao T, Mizuki E, Yamashita S, Saitoh H and Ohba M (1999) Lectin activity of Bacillus thuringiensis parasporal inclusion proteins , FEMS Microbiology Letters, 10.1111/j.1574-6968.1999.tb08757.x, 179:2, (415-421), Online publication date: 1-Oct-1999. Garner K, Hiremath S, Lehtoma K and Valaitis A (1999) Cloning and complete sequence characterization of two gypsy moth aminopeptidase-N cDNAs, including the receptor for Bacillus thuringiensis Cry1Ac toxin, Insect Biochemistry and Molecular Biology, 10.1016/S0965-1748(99)00027-2, 29:6, (527-535), Online publication date: 1-Jun-1999. Burton S, Ellar D, Li J and Derbyshire D (1999) N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin, Journal of Molecular Biology, 10.1006/jmbi.1999.2649, 287:5, (1011-1022), Online publication date: 1-Apr-1999. Singh R, Tiwary A and Kennedy J (2008) Lectins: Sources, Activities, and Applications, Critical Reviews in Biotechnology, 10.1080/0738-859991229224, 19:2, (145-178), Online publication date: 1-Jan-1999. de Maagd R, Bakker P, Masson L, Adang M, Sangadala S, Stiekema W and Bosch D (1999) Domain III of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N, Molecular Microbiology, 10.1046/j.1365-2958.1999.01188.x, 31:2, (463-471), Online publication date: 1-Jan-1999. Yaoi K, Nakanishi K, Kadotani T, Imamura M, Koizumi N, Iwahana H and Sato R (1999) cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 10.1016/S0167-4781(98)00250-4, 1444:1, (131-137), Online publication date: 1-Jan-1999. Kaur S and Mukerji K (1999) Bacteria as Biocontrol Agents of Insects Biotechnological Approaches in Biocontrol of Plant Pathogens, 10.1007/978-1-4615-4745-7_5, (99-114), . Abdul-Rauf M and Ellar D (1999) Isolation and Characterization of Brush Border Membrane Vesicles from WholeAedes aegyptiLarvae, Journal of Invertebrate Pathology, 10.1006/jipa.1998.4792, 73:1, (45-51), Online publication date: 1-Jan-1999. Milne R, Wright T, Kaplan H and Dean D (1998) Spruce budworm elastase precipitates Bacillus thuringiensis δ-endotoxin by specifically recognizing the C-terminal region, Insect Biochemistry and Molecular Biology, 10.1016/S0965-1748(98)00090-3, 28:12, (1013-1023), Online publication date: 1-Dec-1998. Keeton T, Francis B, Maaty W and Bulla L (1998) Effects of Midgut-Protein-Preparative and Ligand Binding Procedures on the Toxin Binding Characteristics of BT-R 1 , a Common High-Affinity Receptor in Manduca sexta for Cry1A Bacillus thuringiensis Toxins , Applied and Environmental Microbiology, 10.1128/AEM.64.6.2158-2165.1998, 64:6, (2158-2165), Online publication date: 1-Jun-1998. Kwa M, de Maagd R, Stiekema W, Vlak J and Bosch D (1998) Toxicity and Binding Properties of theBacillus thuringiensisDelta-Endotoxin Cry1C to Cultured Insect Cells, Journal of Invertebrate Pathology, 10.1006/jipa.1997.4723, 71:2, (121-127), Online publication date: 1-Mar-1998. Denolf P, Hendrickx K, Damme J, Jansens S, Peferoen M, Degheele D and Rie J (1997) Cloning and Characterization of Manduca Sexta and Plutella Xylostella Midgut Aminopeptidase N Enzymes Related to Bacillus Thuringiensis Toxin-Binding Proteins, European Journal of Biochemistry, 10.1111/j.1432-1033.1997.t01-1-00748.x, 248:3, (748-761), Online publication date: 15-Sep-1997. Yaoi K, Kadotani T, Kuwana H, Shinkawa A, Takahashi T, Iwahana H and Sato R (1997) Aminopeptidase N from Bombyx Mori as a Candidate for the Receptor of Bacillus Thuringiensis Cry1Aa Toxin, European Journal of Biochemistry, 10.1111/j.1432-1033.1997.t01-1-00652.x, 246:3, (652-657), Online publication date: 15-Jun-1997. Bravo A (1997) Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains, Journal of Bacteriology, 10.1128/jb.179.9.2793-2801.1997, 179:9, (2793-2801), Online publication date: 1-May-1997. CANNON R (1996) BACILLUS THURINGIENSIS USE IN AGRICULTURE: A MOLECULAR PERSPECTIVE, Biological Reviews, 10.1111/j.1469-185X.1996.tb01285.x, 71:4, (561-636), Online publication date: 1-Nov-1996. Shimizu T and Morikawa K (1996) The β-prism: a new folding motif, Trends in Biochemical Sciences, 10.1016/S0968-0004(06)80018-6, 21:1, (3-6), Online publication date: 1-Jan-1996. Kumar P, Sharma R and Malik V (1996) The Insecticidal Proteins of Bacillus thuringiensis Advances in Applied Microbiology Volume 42, 10.1016/S0065-2164(08)70371-X, (1-43), . Pietrantonio P and Gill S (1996) Bacillus thuringiensis endotoxins: action on the insect midgut Biology of the Insect Midgut, 10.1007/978-94-009-1519-0_13, (345-372), . Li J (1996) Insecticidal δ-Endotoxins from Bacillus Thuringiensis Protein Toxin Structure, 10.1007/978-3-662-22352-9_4, (49-77), . Gill S, Cowles E and Francis V (1995) Identification, Isolation, and Cloning of a Bacillus thuringiensis CryIAc Toxin-binding Protein from the Midgut of the Lepidopteran Insect Heliothis virescens, Journal of Biological Chemistry, 10.1074/jbc.270.45.27277, 270:45, (27277-27282), Online publication date: 1-Nov-1995. Masson L, Lu Y, Mazza A, Brousseau R and Adang M (1995) The CryIA(c) Receptor Purified from Manduca sexta Displays Multiple Specificities, Journal of Biological Chemistry, 10.1074/jbc.270.35.20309, 270:35, (20309-20315), Online publication date: 1-Sep-1995. Cowles E, Yunovitz H, Charles J and Gill S (1995) Comparison of toxin overlay and solid-phase binding assays to identify diverse CryIA(c) toxin-binding proteins in Heliothis virescens midgut, Applied and Environmental Microbiology, 10.1128/aem.61.7.2738-2744.1995, 61:7, (2738-2744), Online publication date: 1-Jul-1995. Knight P, Knowles B and Ellar D (1995) Molecular Cloning of an Insect Aminopeptidase N That Serves as a Receptor for Bacillus thuringiensis CryIA(c) Toxin, Journal of Biological Chemistry, 10.1074/jbc.270.30.17765, 270:30, (17765-17770), Online publication date: 1-Jul-1995. Rajamohan F, Alcantara E, Lee M, Chen X, Curtiss A and Dean D (1995) Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles, Journal of Bacteriology, 10.1128/jb.177.9.2276-2282.1995, 177:9, (2276-2282), Online publication date: 1-May-1995. McCarthy W (1994) Cytolytic differences among lepidopteran cell lines exposed to toxins ofBacillus thuringiensis subst.Kurstaki. (HD-263) andAizawai (HD-112): Effect of aminosugars and N-glycosylation, In Vitro Cellular & Developmental Biology - Animal, 10.1007/BF02631272, 30:10, (690-695), Online publication date: 1-Oct-1994. Knight P, Crickmore N and Ellar D (1994) The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N, Molecular Microbiology, 10.1111/j.1365-2958.1994.tb00324.x, 11:3, (429-436), Online publication date: 1-Feb-1994. Ellar D (1994) Structure and mechanism of action of Bacillus thuringiensis endotoxins and their receptors , Biocontrol Science and Technology, 10.1080/09583159409355355, 4:4, (445-447), Online publication date: 1-Jan-1994. Heckel D (1994) The Complex Genetic Basis of Resistance to Bacillus thuringiensis Toxin in Insects , Biocontrol Science and Technology, 10.1080/09583159409355351, 4:4, (405-417), Online publication date: 1-Jan-1994. Knowles B (1994) Mechanism of Action of Bacillus thuringiensis Insecticidal δ-Endotoxins Advances in Insect Physiology Volume 24, 10.1016/S0065-2806(08)60085-5, (275-308), . Knowles B and Dow J (1993) The crystal ?-endotoxins ofBacillus thuringiensis: Models for their mechanism of action on the insect gut, BioEssays, 10.1002/bies.950150706, 15:7, (469-476), Online publication date: 1-Jul-1993. Sanchis V and Ellar D (2001) Identification and partial purification of a Bacillus thuringiensis CryIC δ-endotoxin binding protein from spodoptera littoralis gut membranes , FEBS Letters, 10.1016/0014-5793(93)81305-J, 316:3, (264-268), Online publication date: 1-Feb-1993. NIELSEN-LEROUX C and CHARLES J (1992) Binding of Bacillus sphaericus binary toxin to a specific receptor on midgut brush-border membranes from mosquito larvae, European Journal of Biochemistry, 10.1111/j.1432-1033.1992.tb17458.x, 210:2, (585-590), Online publication date: 1-Dec-1992. This Issue22 July 1991Volume 245Issue 1312 Article InformationDOI:https://doi.org/10.1098/rspb.1991.0084PubMed:1658805Published by:Royal SocietyPrint ISSN:0962-8452Online ISSN:1471-2954History: Manuscript received21/03/1991Manuscript accepted26/04/1991Published online01/01/1997Published in print22/07/1991 License:Scanned images copyright © 2017, Royal Society Citations and impact Large datasets are available through Proceedings B's partnership with Dryad

Referência(s)