Weyl Semimetal in a Topological Insulator Multilayer
2011; American Physical Society; Volume: 107; Issue: 12 Linguagem: Inglês
10.1103/physrevlett.107.127205
ISSN1092-0145
Autores Tópico(s)Advanced Condensed Matter Physics
ResumoWe propose a simple realization of the three-dimensional (3D) Weyl semimetal phase, utilizing a multilayer structure, composed of identical thin films of a magnetically-doped 3D topological insulator (TI), separated by ordinary-insulator spacer layers. We show that the phase diagram of this system contains a Weyl semimetal phase of the simplest possible kind, with only two Dirac nodes of opposite chirality, separated in momentum space, in its bandstructure. This particular type of Weyl semimetal has a finite anomalous Hall conductivity, chiral edge states, and occurs as an intermediate phase between an ordinary insulator and a 3D quantum anomalous Hall insulator with a quantized Hall conductivity, equal to $e^2/h$ per TI layer. We find that the Weyl semimetal has a nonzero DC conductivity at zero temperature and is thus an unusual metallic phase, characterized by a finite anomalous Hall conductivity and topologically-protected edge states.
Referência(s)