Artigo Revisado por pares

Expansions in statistical physics

1985; Wiley; Volume: 38; Issue: 5 Linguagem: Inglês

10.1002/cpa.3160380511

ISSN

1097-0312

Autores

James Glimm, Arthur Jaffe,

Tópico(s)

Theoretical and Computational Physics

Resumo

Communications on Pure and Applied MathematicsVolume 38, Issue 5 p. 613-630 Article Expansions in statistical physics James Glimm, James Glimm Courant InstituteSearch for more papers by this authorArthur Jaffe, Arthur Jaffe Harvard UniversitySearch for more papers by this author James Glimm, James Glimm Courant InstituteSearch for more papers by this authorArthur Jaffe, Arthur Jaffe Harvard UniversitySearch for more papers by this author First published: September 1985 https://doi.org/10.1002/cpa.3160380511Citations: 7AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Mayer, J. E., and Montroll, E., Molecular distribution, J. Chem. Phys. 9, 1941, pp. 2–16. 10.1063/1.1750822 CASGoogle Scholar 2 Kirkwood, J. G., and Salsburg, Z., Discussions, Faraday Soc. 15, 1953, p. 28. 10.1039/df9531500028 Web of Science®Google Scholar 3 Hill, T. L., Statistical Mechanics, McGraw-Hill, New York, 1956. Google Scholar 4 Ruell, D., Correlation functions of classical gases, Ann. Phys. 25, 1963, pp. 109–120. 10.1016/0003-4916(63)90336-1 Web of Science®Google Scholar 5 Ginibre, J., Reduced density matrices of quantum gases. I: Limit of infinite volume, J. Math. Phys. 6, 1965, pp. 238–251, 10.1063/1.1704275 Web of Science®Google Scholar Reduced density matrices of quantum gases. II: Cluster property, J. Math. Phys. 6, pp. 252–262. Google Scholar 6 Ruell, D., Statistical Mechanics, W. A. Benjamin, Inc., New York, 1969. Google Scholar 7 Symanzik, K., A modified model of Euclidean quantum filed theory, CIMS Report IMM-NYU 327, 1964, Euclidean quantum field theory I: Equations for a scalar model, J. Math. Phys. 7, 1966, pp. 510–525. 10.1063/1.1704960 Web of Science®Google Scholar 8 Symanzik, K., Euclidean quantum field theory, in Local Quantum Theory, Varenna, 1968, R. Jost, ed., Academic Press, New York, 1969. Google Scholar 9 Gruber, Ch., and Kunz, H., General properties of polymer systems, Comm. Math. Phys. 22, 1971, pp. 133–161. 10.1007/BF01651334 Web of Science®Google Scholar 10 Gallavatti, G., Martin-Löf, A., and Miracle-Solé, S., Some problems connected with the description of co-Existing phases at low temperatures in the Ising model, in Statistical Mechanics and Mathematical Problems, Battelle, 1971, A. Lenard, ed., Lecture Notes in Physics 25, Springer-Verlag, New York, 1973. Google Scholar 11 Glimm, J., Jaffe, A., and Spencer, T., The Wightman axioms and particle structure in the P(Φ)2 quantum field model, Ann. Math. 100, 1974, pp. 585–632. 10.2307/1970959 Web of Science®Google Scholar 12 Glimm, J., Jaffe, A., and Spencer, T., The particle structure of the weakly coupled P(Φ)2 model and other applications of high temperature expansions, in Constructive Quantum Field Theory, G. Velo and A. Wightman, eds., Lecture Notes in Physics 25, Springer-Verlag, New York, 1973. Google Scholar 13 Eckmann, J.-P., Magnen, J., and Sénéor, R., Decay properties and Borel summability for Schwinger functions in P(Φ)2 theories, Comm. Math. Phys. 39, 1975, pp. 251–271. 10.1007/BF01705374 Web of Science®Google Scholar 14 Glimm, J., Jaffe, A., and Spencer, T., A convergent expansion about mean field theory, Part I, Ann. Phys. 101, 1976, pp. 610–630, 10.1016/0003-4916(76)90026-9 Web of Science®Google Scholar A convergent expansion about mean field theory, Part II, Ann. Phys. 101, 1976, pp. 631–669. 10.1016/0003-4916(76)90027-0 Web of Science®Google Scholar 15 Piragov, S. A., and Sinai, Ya. G., Phase diagrams of classical lattice systems, Theor. Mat. Fiz., 25, 1975, pp. 358–369, and Google Scholar Theor. Mat. Fiz., 26, 1976, pp. 61–76. Google Scholar English translation: Theor. Math. Phys. 25, 1976, pp. 1185–1192 and 10.1007/BF01040127 Web of Science®Google Scholar Theor. Math. Phys. 26, 1976, pp. 39–49. 10.1007/BF01038255 Web of Science®Google Scholar 16 Brydges, D., and Federbush, P., A new form of the Mayer expansion in classical statistical mechanics, J. Math. Phys. 19, 1978, pp. 2064–2067. 10.1063/1.523586 Web of Science®Google Scholar 17 Balaban, T., and Gawedzki, K., A low temperature expansion for the pseudoscalar Yukawa model of quantum fields in two space-Time dimensions, Ann. l'Inst. H. Poincaré 36, 1982, pp. 271–400. Google Scholar 18 Malyshev, S., Uniform cluster estimates for lattice models, Comm. Math. Phys. 64, 1979, pp. 131–157. 10.1007/BF01197510 Web of Science®Google Scholar 19 Imbrie, J., Phase diagrams and cluster expansions for low temperature P(Φ)2 models, I. The phase diagram, Comm. Math. Phys. 82, 1981, pp. 261–304. 10.1007/BF02099920 Web of Science®Google Scholar 20 Cammarota, C., Decay of correlations for infinite range interactions in unbounded spin systems, Comm. Math. Phys. 85, 1982, pp. 517–528. 10.1007/BF01403502 Web of Science®Google Scholar 21 Seiler, E., Gauge theories as a problem in constructive field theory and statistical mechanics, in Lecture Notes in Physics 159, Springer-Verlag, New York, 1982. Google Scholar 22 Göpfert, M., and Mack, G., Iterated Mayer expansion for classical gases at low temperatures, Comm. Math. Phys. 81, 1981, pp. 97–126. 10.1007/BF01941802 Web of Science®Google Scholar 23 Imbrie, J., Deybye screening for Jellium and other Coulomb systems, Comm. Math. Phys. 87, 1982, pp. 515–565. 10.1007/BF01208264 Web of Science®Google Scholar 24 Frölich, J., and Spencer, T., The Kosterlitz-Thoulass transition in two-Dimensional abelian spin systems and the Coulomb gas, Comm. Math. Phys. 81, 1981, pp. 527–602. 10.1007/BF01208273 Web of Science®Google Scholar 25 Fröolich, J., and Imbrie, J., Improved perturbation expansion for disordered systems: beating Griffiths singularities, Comm. Math. Phys. 96, 1984, pp. 145–180. 10.1007/BF01240218 Web of Science®Google Scholar 26 Imbrie, J., The ground state of the three-Dimensional random-Field Ising model, Comm. Math. Phys., to appear. Google Scholar Citing Literature Volume38, Issue5September 1985Pages 613-630 ReferencesRelatedInformation

Referência(s)