Affine Lie Supergroups
1989; Wiley; Volume: 143; Issue: 1 Linguagem: Francês
10.1002/mana.19891430123
ISSN1522-2616
Autores Tópico(s)Nonlinear Waves and Solitons
ResumoMathematische NachrichtenVolume 143, Issue 1 p. 303-327 Article Affine Lie Supergroups Helmut Boseck, Helmut Boseck Sektion Mathematik Ernst-Moritz-Arndt-Universität Friedrich-Ludwig-Jahn-Straße 15a DDR-Greifswald 2200Search for more papers by this author Helmut Boseck, Helmut Boseck Sektion Mathematik Ernst-Moritz-Arndt-Universität Friedrich-Ludwig-Jahn-Straße 15a DDR-Greifswald 2200Search for more papers by this author First published: 1989 https://doi.org/10.1002/mana.19891430123Citations: 9AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 [Russian Text Ignored.] 1983 Google Scholar 2 H. Boseck, Graded Lie algebras, graded Hopf algebras, and graded algebraic groups, Proceedings of the 2nd Conference on Convergence structures and their Applications, Schwerin 1983, Abh. der AdW der DDR Abtlg. Math.-Naturw.-Techn. 1984 Nr. 2, 15–24 Google Scholar 3 H. Boseck, The enveloping algebra of a Lie superalgebra, its dual and bidual, Proceedings of the 2nd International Conference on Operator Algebras, Ideals and their Applications in Theoretical Physics, Leipzig 1983, Teubner Texte 67 (1984) 57–63 Google Scholar 4 H. Boseck, Hopf Superalgebren und algebraische Lie Supergruppen. Ergebnisse der Schule junger Wissenschaftler zur Mathematischen Physik, Bad Saarow 1984, 24–39 Google Scholar 5 H. Boseck, On representative functions of Lie superalgebras, Math. Nachr. 123 (1985) 61–72 10.1002/mana.19851230107 Web of Science®Google Scholar Correction to my paper “On representative.”, Math. Nachr. 130 (1987) 137–138 10.1002/mana.19871300112 Google Scholar 6 H. Boseck, On graded algebraic groups, Topics in Quantum Field Theory and Spectral Theory. International Conference “Global Analysis and Mathematical Physics”, Reinhardsbrunn 1985, AdW der DDR, Karl-Weierstrass-Institut für Math., Report 1986, 136–145 Google Scholar 7 L. Corwin, Y. Ne'eman, S. Sternberg, Graded Lie algebras in Mathematics and Physics (Bose-Fermi-Symmetry), Reviews of Modern Physics 47 (1975) 57–63 10.1103/RevModPhys.47.573 Web of Science®Google Scholar 8 R. G. Heynemann, M. E. Sweedler, Affine Hopf algebras I, Journal of Algebra 13 (1969) 192–241 10.1016/0021-8693(69)90071-4 Web of Science®Google Scholar 9 G. Hochschild, Algebraic groups and Hopf algebras, Illinois Journal Math. 14 (1970) 52–65 Web of Science®Google Scholar 10 G. Hochschild, Introduction to Affine Algebraic Groups, Holden Day Inc. 1971 Google Scholar 11 G. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Math. 75, Springer 1981 Google Scholar 12 B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Lect. Notes in Math. 570 (1977) 177–306 Google Scholar 13 [Russian Text Ignored.] 1984 Google Scholar 14 S. MacLane, Homology, Springer 1963 10.1007/978-3-642-62029-4 Google Scholar 15 J. Milnor, J. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211–264 10.2307/1970615 Web of Science®Google Scholar 16 M. Scheunert, The theory of Lie superalgebras, Lect. Notes in Math. 716 (1979) Google Scholar 17 M. E. Sweedler, Hopf algebras, Benjamin Inc. New York (1969) Google Scholar 18 H. Boseck, On Lie supergroups, Aportaciones Matematicas de Sociedad Matematicas Mexiko (submitted) Google Scholar 19 H. Boseck, Classical Lie supergroups, Math. Nachr. (submitted) Google Scholar Citing Literature Volume143, Issue11989Pages 303-327 ReferencesRelatedInformation
Referência(s)