Pathways to the Secretion of Adrenocorticotropin: A View from the Portal*
1991; Wiley; Volume: 3; Issue: 1 Linguagem: Inglês
10.1111/j.1365-2826.1991.tb00231.x
ISSN1365-2826
Autores Tópico(s)Receptor Mechanisms and Signaling
ResumoJournal of NeuroendocrinologyVolume 3, Issue 1 p. 1-9 Free Access Pathways to the Secretion of Adrenocorticotropin: A View from the Portal* Paul M. Plotsky, Corresponding Author Paul M. Plotsky The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, USA.Correspondence to: P. M. Plotsky, The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, P.O. Box 85800, San Diego, California 92138, USA.Search for more papers by this author Paul M. Plotsky, Corresponding Author Paul M. Plotsky The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, USA.Correspondence to: P. M. Plotsky, The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, P.O. Box 85800, San Diego, California 92138, USA.Search for more papers by this author First published: February 1991 https://doi.org/10.1111/j.1365-2826.1991.tb00231.xCitations: 193 * Based on 1st Mortyn Jones Memorial Lecture presented at Bristol, UK, April 1989. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Bernard C. (1949). An introduction to the study of experimental medicine. Henry Schuman, New York . 2 Cannon W. (1932). The wisdom of the body. Norton, New York . 3 Solve H. (1946). The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 6: 117– 230. 4 Addison T. (1855). On the constitutional and local effects of disease of the suprarenal capsules. Highley, London . 5 Britton S, Silvette H. (1932). The apparent prepotent function of the adrenal glands. Am J Physiol. 100: 701– 713. 6 Ingle D. (1950). The biologic properties of cortisone: a review. J Clin Endocrinol Metab. 10: 1312– 1354. 7 Rowntree L, Green C, Swingle W, Pfiffner J. (1930). The treatment of patients with Addison's disease with the 'cortical hormone' of Swingle and Pfiffner. Science. 72: 482– 483. 8 Evans G. (1936). The adrenal cortex and endogenous carbohydrate formation. Am J Physiol. 114: 297– 308. 9 Popa G, Fielding U. (1933). Hypophysioportal vessels and their colloid accompaniment. J Anat. 67: 227– 232. 10 Houssay B, Biascotti A, Samartino G. (1935). Modifications functionelles de l'hypophyse apres les lesions infundibuloturberiennes chez le crapaud. CR Soc Biol (Paris). 120: 725– 727. 11 Wislocki G, King L. (1936). Permeability of the hypophysis and the hypothalamus to vital dyes, with study of the hypophyseal blood supply. Am J Anat. 58: 421– 472. 12 Scharrer B. (1975). Neurosecretion and its role in neuroendocrine regulation. In: J Meites, B Donovan and S McCann, eds. Pioneers in neuroendocrinology, 255– 266. Plenum Press, New York . 13 Harris G. (1948). Neural control of the pituitary gland. Physiol Rev. 28: 139– 179. 14 Plotsky P. (1987). Regulation of hypophysiotropic factors mediating ACTH secretion. In: W Ganong, M Dallman and J Roberts, eds. The hypothalamic-pituitary-adrenal axis revisited, vol. 512: 205– 217. New York Academy of Sciences, New York . 15 Antoni F. (1986). Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 7: 351– 357. 16 Merchenthaler I, Vigh S, Petrusz P, Schally A. (1982). Immunocytochemical localization of corticotropin releasing factors (CRF) in the rat brain. Am J Anat. 165: 385– 396. 17 Paull W, Gibbs F. (1983). The corticotropin releasing factor (CRF) neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone treated rats. Histochemistry. 78: 303– 316. 18 Swanson L, Sawchenko P, Rivier J, Vale W. (1983). Organization of ovine corticotropin releasing factor (CRF)-immunoactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology. 36: 165– 186. 19 Vale W, Spiess J, Rivier C, Rivier J. (1981). Characterisation of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science. 213: 1394– 1397. 20 Rivier C, Plotsky P. (1986). Mediation by corticotropin releasing factor (CRF) of adenohypophysial hormone secretion. Annu Rev Physiol. 48: 475– 494. 21 Bruhn T, Sutton R, Rivier C, Vale W. (1984). Corticotropin-releasing factor regulates proopiomelanocortin messenger ribonucleic acid levels in vivo. Neuroendocrinology. 39: 170– 175. 22 Eberwine J, Jonassen J, Evinger M, Roberts J. (1987). Complex transcriptional regulation by glucocorticoids and corticotropin-releasing hormone of proopiomelanocortin gene expression in rat pituitary cell cultures. DNA. 6: 483– 492. 23 Autelitano D, Blum M, Lopingco M, Allen R, Roberts J. (1990). Corticotropin-releasing factor differentially regulates anterior and intermediate pituitary lobe proopiomelanocortin gene transcription, nuclear precursors RNA and mature mRNA in vivo. Neuroendocrinology. 51: 123– 130. 24 Gillies G, Linton E, Lowry P. (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 299: 355– 357. 25 Vale W, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C. (1983). Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology. 113: 1121– 1123. 26 Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. (1987). Interleukin-1 stimulates the secretion of hypothalamic corticotropin releasing factor. Science. 238: 522– 524. 27 Munck A, Guyre P, Holbrook N. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 5: 25– 44. 28 Dallman M, Jones M. (1973). Corticosteroid feedback control of ACTH secretion: effects of stress-induced corticosterone secretion in subsequent stress response in the rat. Endocrinology. 92: 1367– 1375. 29 Mamoud S, Jones M. (1977). Relative importance of corticosteroid negative-feedback at the hypothalamus and anterior pituitary gland. J Endocrinol. 75: 29P. 30 Keller-Wood M, Dallman M. (1984). Corticosteroid inhibition of ACTH secretion. Endocr Rev. 5: 1– 24. 31 Plotsky P. (1989). Regulation of the adrenocortical axis: hypophysiotropic coding, catecholamines and glucocorticoids. In: F Rose, ed. The control of the hypothalamo-pituitary-adrenocortical axis, 131– 146. International Universities Press, Madison . 32 Fink G, Aiyer M, Chiappa S, Henderson S, Jamieson M, Levy-Perez V, Pickering A, Sarkar D, Sherwood N, Speight A, Watts A. (1983). Gonadotropin-releasing hormone release into the hypophyseal portal blood and mechanism of action. In: K McKerns and V Pantic, eds. Hormonally active brain peptides, structure and function, 397– 426. Plenum Press, New York . 33 Engler D, Pham T, Fullerton M, Funder J, Clarke I. (1988). Studies of the regulation of the hypothalamic-adrenal axis in sheep with hypothalamic-pituitary disconnection. I. Effect of an audiovisual stimulus and insulin-induced hypoglycemia. Neuroendocrinology. 48: 551– 560. 34 Clarke M, Lowry P, Gillies G. (1987). Assessment of corticotropin-releasing factor, vasopressin and somatostatin secretion by fetal hypothalamic neurons in culture. Neuroendocrinology. 46: 147– 154. 35 Engler D, Liu J-P, Horton R, Clarke I. (1989). Evidence that central noradrenergic and adrenergic pathways activate the hypothalamic-pituitary-adrenal (HPA) axis in the sheep. Proc 71st Ann Meeting Endocr Soc, Seattle, Washington. Abstr. 1731 36 Caraty A, Oliver C, Locatelli A, Conte-Devolx B. (1988). CRF and AVP levels in hypophysial portal blood of conscious unrestrained castrated rams. Endocrinology 122: 225. 37 Caraty A, Grino M, Locatelli A, Oliver C. (1988). Secretion of corticotropin releasing factor (CRF) and vasopressin (AVP) into the hypophysial portal blood of conscious, unrestrained rams. Biochem Biophys Res Commun. 155: 841– 849. 38 Ixart G, Barbanel G, Conte-Devolx B, Grino M, Oliver C, Assen-macher I. (1987). Evidence for basal and stress-induced release of corticotropin releasing factor in the push-pull cannulated median eminence. Neurosci Lett. 74: 85– 89. 39 Linton E, MClean C, Nieuwenhuyzen-Kruseman A, Tilders F, Veen EVD, Lowry P. (1987). Direct measurement of human plasma corticotropin-releasing hormone by 'two-site' immunoradiometric assay. J Clin Endocrinol Metab. 64: 1047– 1053. 40 Campbell E, Linton E, Wolfe C, Scraggs P, Jones M, Lowry P. (1987). Plasma corticotropin-releasing hormone concentration during pregnancy and parturition. J Clin Endocrinol Metab. 64: 1054– 1059. 41 Yokoe T, Audhya T, Brown C, Hutchinson B, Passarelli J, Hollander C. (1988). Corticotropin-releasing factor levels in the peripheral plasma and hypothalamus of the rat vary in parallel with changes in the pituitary-adrenal axis. Endocrinology. 123: 1348– 1354. 42 Sumitomo T, Suda T, Tomori N, Yajima F, Nakagami Y, Ushiyama T, Demura H, Shizume K. (1987). Immunoreactive corticotropin-releasing factor in rat plasma. Endocrinology. 120: 1391– 1396. 43 Sasaki A, Sato S, Murakami O, Go M, Inoue M, Shimizu Y, Hanew K, Andoh N, Sato I, Sasano N, Yoshinaga K. (1987). Immunoreactive corticotropin-releasing hormone present in human plasma may be derived from both hypothalamic and extrahypothalamic sources. J Clin Endocrinol Metab. 65: 176– 182. 44 Plotsky P, Otto S, Toyama T, Sutton S. (1990). Lack of correlation between immunoreactive corticotropin-releasing factor concentration profiles in hypophysial-portal and peripheral plasma. J Neuroendocrinol. 2: 65– 69. 45 Berkenbosch F, Goeij DD, Tilders F. (1989). Hypoglycemia enhances turnover of corticotropin-releasing factor and vasopressin in the zona externa of the rat median eminence. Endocrinology. 125: 28– 34. 46 Berkenbosch F, Oers JV, Key AD, Tilders F, Besedovsky H. (1987). Corticotropin releasing factor producing neurons in the rat activated by interleukin 1. Science. 238: 524– 526. 47 Berkenbosch F, Tilders F. (1988). Effect of axonal transport blockade on corticotropin-releasing factor immunoreactivity in the median eminence of intact and adrenalectomized rats: relationship between depletion rate and secretory activity. Brain Res. 442: 312– 320. 48 Plotsky P. (1985). Hypophysiotropic regulation of adrenohypophysial ACTH secretion. Fed Proc. 44: 207– 213. 49 Gibbs D. (1985). Inhibition of Corticotropin release during hypothermia: the role of Corticotropin releasing factor, vasopressin, and oxytocin. Endocrinology. 116: 723– 727. 50 Plotsky P, Otto S, Sapolsky R. (1986). Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology. 119: 1126– 1130. 51 Plotsky P, Bruhn T, Vale W. (1985). Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology. 116: 633– 639. 52 Whitnall M. (1990). Subpopulations of corticotropin-releasing hormone neurosecretory cells distinguished by presence or absence of vasopressin: confirmation with multiple corticotropin-releasing hormone antisera. Neuroscience. 36: 201– 205. 53 Whitnall M. (1988). Distributions of pro-vasopressin expressing and pro-vasopressin deficient CRH neurons in the para ventricular hypothalamic nucleus of colchicine-treated normal and adrenalectomized rats. J Comp Neurol. 275: 13– 28. 54 Whitnall M. (1989). Stress selectively activates the vasopressin-containing subset of corticotropin-releasing hormone neurons. Neuroendocrinology. 50: 702– 707. 55 Page R. (1983). Directional pituitary blood flow: a microcinephotographic study. Endocrinology. 112: 157– 165. 56 Page R. (1982). Pituitary blood flow. Am J Physiol. 243: E427– E442. 57 Bruhn T, Plotsky P, Vale W. (1984). Effect of paraventricular lesions on corticotropin-releasing factor-like immunoreactivity into the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF. Endocrinology 114: 57. 58 Fagin K, Wiener S, Dallman M. (1985). ACTH and corticosterone secretion in rats following removal of the neurointermediate lobe of the pituitary gland. Neuroendocrinology. 40: 352– 362. 59 Dohanics J, Kapocs G, Janaky T, Kiss J, Rappay G, Laszlo F, Makara G. (1986). Mechanism of restoration of ACTH release in rats with long-term lesions of the paraventricular nuclei. J Endocrinol. 111: 75– 82. 60 Raff H, Merrill D, Skelton M, Brownfield M, Crowley J. (1988). Control of adrenocorticotropin secretion and adrenocortical sensitivity in neurohypophysectomized conscious dogs: effects of acute and chronic vasopressin replacement. Endocrinology. 122: 1410– 1418. 61 Recht L, Hoffman D, Haldar J, Silverman A, Zimmerman E. (1981). Vasopressin concentrations in hypophysial portal plasma: insignificant reduction following removal of the posterior pituitary gland. Neuroendocrinology. 33: 88– 90. 62 Dohanics J, Verbalis J. (1989). Hyponatremia-induced inhibition of magnocellular vasopressin secretion selectively impairs ACTH secretion in response to stress. Proc 71st Ann Meeting Endocr Soc, Seattle, Washington. Abstr. 1727 63 Gann D, Ward D, Carlson D. (1978). Neural control of ACTH: a homeostatic reflex. Recent Prog Horm Res. 34: 357– 400. 64 Swanson L, Sawchenko P. (1980). Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology. 31: 410– 417. 65 Sawchenko P, Swanson L. (1983). The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. In: B Cross and G Leng, eds. The neurohypophysis: structure, function and control. Progress in brain research, vol. 60: 19– 29. Elsevier, Amsterdam . 66 Feldman S, Saphier D. (1985). Role of neurotransmitters and electro-physiological changes in the hypothalamus related to central adrenocortical regulation. In: K McKerns, eds. Neuroendocrine correlates of stress, 39– 62. Plenum Press, New York . 67 Mor G, Saphier D, Feldman S. (1987). Neural pathways mediating the effects of afferent stimuli on paraventricular nucleus multiunit activity in freely-moving rats. J Neurosci Res. 17: 452– 458. 68 Tucker D, Saper C, Ruggiero D, Reis D. (1987). Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol. 259: 591– 603. 69 Ward D, Lefcourt A, Gann D. (1980). Neurons in the dorsal rostral pons process information about changes in venous return and in arterial pressure. Brain Res. 181: 75– 88. 70 Contreras R, Beckstead R, Norgren R. (1982). An autoradiographic examination of the central distribution of the trigeminal, facial glosso-pharyngeal and vagus nerves in the rat. J Auton Nerv Syst. 6: 303– 322. 71 Sumal K, Blessing W, Joh T, Reis D, Pickel V. (1983). Synaptic interactions of vagal afferents and catecholaminergic neurons in the rat nucleus solitarius. Brain Res. 277: 31– 40. 72 Reis D. (1986). The Cl area of rostral ventrolateral medulla: role in tonic and reflex regulation of arterial pressure. In: A Magro, W Osswald, D Reis and P Vanhoutte, eds. Central and peripheral mechanisms of cardiovascular regulation, 487– 502. Plenum Press, New York . 73 Menetrey D, Basbaum A. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol. 255: 439– 450. 74 Sawchenko P. (1983). Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst. 9: 13– 26. 75 Norgren R. (1984). Central neural mechanisms of taste. In: V Mount-castle, ed. The nervous system: sensory processes, 1087– 1124. American Physiological Society, Bethesda . 76 Swanson L, Sawchenko P. (1983). Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci. 6: 269– 324. 77 Liposits Z, Phelix C, Paull W. (1986). Adrenergic innervation of corticotropin-releasing factor (CRF)-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Histochemistry. 84: 201– 205. 78 Cunningham E, Sawchenko P. (1988). Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol. 274: 60– 76. 79 Mezey E, Reisine T, Brownstein M, Palkovits M, Axelrod J. (1984). β-adrenergic mechanism of insulin-induced adrenocorticotropin release from the anterior pituitary. Science. 226: 1085– 1087. 80 Agnati L, Fuxe K, Yu Z-Y, Harfstrand A, Okret S, Wikstrom A-C, Goldstein M, Zoli M, Vale W, Gustafsson J-A. (1985). Morphometrical analysis of the distribution of Corticotropin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci Lett. 54: 147– 152. 81 Zoli M, Agnati L, Fuxe K, Zini I, Pich E, Grimaldi R, Harfstrand A, Goldstein M, Wikstrom A, Gustafsson J. (1988). Morphometrical and microdensitometrical studies on phenylethanolamine-n-methyl-transferase-and neuropeptide Y-immunoreactive nerve terminals and on glucocorticoid receptor-immunoreactive nerve ceil nuclei in the paraventricular hypothalamic nucleus in adult and old male rats. Neuroscience. 26: 479– 492. 82 Sawchenko P, Swanson L, Grzanna R, Howe P, Bloom S, Polak J. (1985). Colocalization of neuropeptide Y immunoreactivity in brain-stem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol. 241: 138– 153. 83 Liposits Z, Sievrs L, Paull W. (1988). Neuropeptide Y - and ACTH-immunoreactive innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamus of the rat. Histochemistry. 88: 227– 234. 84 Jones M, Gillham B, Campbell E, Al-Taher A, Chuang T, DiSciullo A. (1988). Pharmacology of neural pathways affecting CRH secretion. In: W Ganong, M Dallman and J Roberts, eds. The hypothalamic-pituitary-adrenal axis revisited, vol. 512: 162– 175. New York Academy of Sciences, New York . 85 Nicholson S, Adrian T, Gillham B, Jones M, Bloom S. (1984). Effect of hypothalamic neuropeptides on corticotrophin release from quarters of rat anterior pituitary gland in vitro. J Endocrinol. 100: 219– 226. 86 Jones M, Gillham B, DiRenzo G, Beckford U, Holmes M. (1981). Neural control of corticotrophin secretion. Front Horm Res. 8: 12– 43. 87 DiRenzo G, Gillham B, Holmes M, Jones M. (1979). The effect of pretreatment with intraventricular 6-hydroxydopamine on hypothalamo-pituitary-adrenocortical function in the rat. J Physiol. 293: 50– 51P. 88 Jones M, Hillhouse E. (1977). Neurotransmitter regulation of corticotropin-releasing factor in vitro. Ann NY Acad Sci. 297: 536– 560. 89 Jones M, Hillhouse E, Burden J. (1976). Effect of various putative neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro–-a model of the neurotransmitters involved. J Endocrinol. 69: 1– 10. 90 Hillhouse E, Burden J, Jones M. (1975). The effect of various putative neurotransmitters on the release of corticotrophin-releasing hormone from the hypothalamus of the rat in vitro. I. The effect of acetylcholine and noradrenaline. Neuroendocrinology. 17: 1– 11. 91 Plotsky P, Bruhn T, Otto S. (1985). Central modulation of immunore-active arginine vasopressin and oxytocin secretion into the hypophysial-portal circulation by corticotropin-releasing factor. Endocrinology. 116: 1669– 1671. 92 Plotsky P. (1987). Opioid inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation of rats. Regul Pept. 16: 235– 242. 93 Plotsky P. (1987). Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology. 121: 924– 930. 94 Plotsky P, Otto S, Sutton S. (1987). Neurotransmitter modulation of corticotropin releasing factor secretion into the hypophysial-portal circulation. Life Sci. 41: 1311– 1317. 95 Plotsky P, Sutton S, Bruhn T, Ferguson A. (1988). Analysis of the role of angiotensin II in mediation of adrenocorticotropin secretion. Endocrinology. 122: 538– 545. 96 Sutton S, Kjaer A, Vale W, Plotsky P. (1990). Modulation of hypothalamic CRF-41 by activin-A. Soc. Neurosci Abstr. Abstr. 41.6 97 Sutton S, Toyama T, Sarkar D, Plotsky P. Analysis of neuropeptide Y (NPY) action in regulation of LH secretion. Proc 5th Int Symp on Psychoneuroendocrinology in Reproduction, Rome , Italy . (In press). 98 Plotsky P, Cunningham E, Widmaier E. (1989). Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev. 10: 437– 458. 99 Buckingham J, Hodges J. (1979). Hypothalamic receptors influencing the secretion of corticotrophin-releasing hormone in the rat. J Physiol (Lond). 290: 421– 431. 100 Ganong W. (1980). Neurotransmitters and pituitary function: regulation of ACTH secretion. Fed Proc. 39: 2923– 2930. 101 Mezey E, Kiss J, Skirboll L, Goldstein M, Axelrod J. (1984). Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurons by depletion of hypothalamic adrenaline. Nature. 310: 140– 141. 102 Feldman S, Melamed E, Conforti N, Weidenfeld J. (1984). Inhibition in corticotrophin and corticosterone secretion following photic stimulation in rats with 6-hydroxydopamine injection into the medial forebrain bundle. J Neurosci Res. 12: 87– 92. 103 Krieger H, Krieger D. (1970). Chemical stimulation of the brain: effect on adrenal corticoid release. Am J Physiol. 218: 1632– 1641. 104 Smythe G, Bradshaw J, Vining R. (1983). Hypothalamic monoamine control of stress-induced adrenocorticotropin release in the rat. Endocrinology. 113: 1062– 1071. 105 Day T, Randle J, Renaud L. (1985). Opposing α-and β-adrenergic mechanisms mediate dose-dependent actions of noradrenaline on supraoptic vasopressin neurons in vivo. Brain Res. 358: 171– 179. 106 Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I. (1987). Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology. 121: 883– 892. 107 Guillaume V, Conte-Devolx B, Szafarczyk A, Malaval F, Pares-Herbute N, Grino M, Alonso G, Assenmacher I, Oliver C. (1987). The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines. Neuroendocrinology. 46: 143– 146. 108 Al-Damluji S, Perry L, Tomlin S, Bouloux P, Grossman A, Rees L, Besser G. (1987). Alpha-adrenergic stimulation of corticotropin secretion by a specific central mechanism in man. Neuroendocrinology. 45: 68– 76. 109 Al-Damluji S. (1988). Adrenergic mechanisms in the control of corticotrophin secretion. J Endocrinol. 119: 5– 14. 110 Saphier D. (1990). Catecholaminergic projections to tuberoinfundibular neurones of the paraventricular nucleus: I. Effects of stimulation of A1, A2, A6 and C2 cell groups. Brain Res Bull. 23: 389– 395. 111 Sawchenko P, Arias C, Bittencourt J. (1990). Inhibin b-, somatostat-in-and enkephalin-immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol. 291: 269– 280. 112 Sawchenko P, Pfeiffer S. (1989). Ultrastructural localization of neuropeptide Y - and galanin-immunoreactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Res. 474: 231– 245. 113 Levin M, Sawchenko P, Howe P, Polak J, Bloom S. (1987). The organization of galanin-immunoreactive inputs to the paraventricular nucleus with special reference to their relationship to catecholaminergic afferents. J Comp Neurol. 261: 562– 582. 114 Everitt B, Hokfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M. (1984). Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system in the rat. Neuroscience. 11: 443– 462. 115 Sawchenko P, Benoit R, Brown M. (1988). Somatostatin 28-immunoreactive inputs to the paraventricular and supraoptic nuclei: principal origin from non-aminergic neurons in the nucleus of the solitary tract. J Chem Neuroanat. 1: 81– 94. 116 Inoue T, Inui A, Okita M, Sakatani N, Oya M, Morioka H, Mizuno N, Oimomi M, Baba S. (1989). Effect of neuropeptide Y on the hypothalamic-pituitary-adrenal axis in the dog. Life Sci. 44: 1043– 1051. 117 Haas D, George S. (1987). Neuropeptide Y administration acutely increases hypothalamic corticotropin-releasing factor immunoreactivity: lack of effect in other rat brain regions. Life Sci. 41: 2725– 2731. 118 Perrin M, Haas Y, Porter J, Rivier J, Vale W. (1989). The gonadotropin-releasing hormone pituitary receptor interacts with a guanosine triphosphate-binding protein: differential effects of guanyl nucleotides on agonist and antagonist binding. Endocrinology. 124: 798– 804. 119 Albers H, Ottenweller J, Liou S, Lumpkin M, Anderson E. (1990). Neuropeptide Y in the hypothalamus: effect on corticosterone and single unit activity. Am J Physiol. 258: R376– R382. 120 Haas D, George S. (1989). Neuropeptide Y-induced effects on hypothalamic corticotropin-releasing factor content and release are dependent on noradrenergic/adrenergic neurotransmission. Brain Res. 498: 333– 338. 121 Westlind AD, Unden A, Abens J, Andell S, Bartfai T. (1987). Neuropeptide Y receptors and the inhibition of adenylate cyclase in the human frontal and temporal cortex. Neurosci Lett. 74: 237– 242. 122 Motulsky H, Michel M. (1988). Neuropeptide Y mobilizes Ca2+ and inhibits adenylate cyclase in human erythroleukemia cells. Am J Physiol. 255: E880– E885. 123 Ewald DA, Sternweis PC, Miller RJ. (1988). Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. Proc Natl Acad Sci USA. 85: 3633– 3637. 124 Harfstrand A, Fuxe K, Agnati L, Fredholm B. (1989). Reciprocal interactions between alpha 2-adrenoceptor agonist and neuropeptide Y binding sites in the nucleus tractus solitarius of the rat. A biochemical and autoradiographic analysis. J Neural Transm. 75: 83– 99. 125 Heilig M, Wahlestedt C, Widerlov E. (1988). Neuropeptide Y (NPY)-induced suppression of activity in the rat: evidence for NPY receptor heterogeneity and for interaction with alpha-adrenoceptors. Eur J Pharmacol. 157: 205– 213. 126 Haggblad J, Fredholm B. (1987). Adenosine and neuropeptide Y enhance al-adrenoceptor-induced accumulation of inositol phosphates and attenuate forskolin-induced accumulation of cyclic AMP in rat
Referência(s)