Stability Theory for Partial Difference Operators
1969; Society for Industrial and Applied Mathematics; Volume: 11; Issue: 2 Linguagem: Inglês
10.1137/1011033
ISSN1095-7200
Autores Tópico(s)Advanced Mathematical Modeling in Engineering
ResumoPrevious article Next article Stability Theory for Partial Difference OperatorsVidar ThoméeVidar Thoméehttps://doi.org/10.1137/1011033PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Mats Y. T. Apelkrans, On difference schemes for hyperbolic equations with discontinuous initial values, Math. Comp., 22 (1968), 525–539 MR0233527 0164.45502 CrossrefISIGoogle Scholar[2] D. G. Aronson, The stability of finite difference approximations to second order linear parabolic differential equations, Duke Math. J., 30 (1963), 117–127 10.1215/S0012-7094-63-03014-X MR0145681 0112.35202 CrossrefISIGoogle Scholar[3] D. G. Aronson, On the stability of certain finite difference approximations to parabolic systems of differential equations, Numer. Math. 5 (1963), 118-137; correction, ibid., 5 (1963), 290– 10.1007/BF01385898 MR0156485 0115.34802 CrossrefGoogle Scholar[4] D. G. Aronson, On the correctness of partial differential operators and the von Neumann condition for stability of finite difference operators, Proc. Amer. Math. Soc., 14 (1963), 948–955 MR0156484 0158.11003 CrossrefGoogle Scholar[5] G. Birkhoff, Well-set Cauchy problems and $C_{0}$-semigroups, J. Math. Mech., 12 (1963), 55–68 0168.35303 Google Scholar[6] Garrett Birkhoff and , Robert E. Lynch, J. H. Bramble, Numerical solution of the telegraph and related equationsNumerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, 289–315 MR0203953 0202.45703 Google Scholar[7] Garrett Birkhoff and , Richard S. Varga, Discretization errors for well-set Cauchy problems. I, J. Math. and Phys., 44 (1965), 1–23 MR0179952 0134.13406 CrossrefISIGoogle Scholar[8] Philip Brenner, The Cauchy problem for symmetric hyperbolic systems in $L\sb{p}$, Math. Scand., 19 (1966), 27–37 MR0212427 0154.11304 CrossrefISIGoogle Scholar[9] Mary Louise Buchanan, A necessary and sufficient condition for stability of difference schemes for initial value problems, J. Soc. Indust. Appl. Math., 11 (1963), 919–935 10.1137/0111067 MR0160324 0221.65144 LinkISIGoogle Scholar[10] H. Lewy, , R. Courant and , K. Friedrichs, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32–74 10.1007/BF01448839 MR1512478 CrossrefGoogle Scholar[11] Germund Dahlquist, Convergence and stability for a hyperbolic difference equation with analytic initial-values, Math. Scand., 2 (1954), 91–102 MR0065273 0055.35801 Google Scholar[12] Jim Douglas, Jr., On the relation between stability and convergence in the numerical solution of linear parabolic and hyperbolic differential equations, J. Soc. Indust. Appl. Math., 4 (1956), 20–37 10.1137/0104002 MR0080368 0072.14703 LinkISIGoogle Scholar[13] Jim Douglas, Jr., F. L. Alt, A survey of numerical methods for parabolic differential equationsAdvances in Computers, Vol. 2, Academic Press, New York, 1961, 1–54 MR0142211 0133.38503 CrossrefGoogle Scholar[14] R. P. Fedorenko, Application of high-accuracy difference schemes to the numerical solution of hyperbolic equations, Ž. Vyčisl. Mat. i Mat. Fiz., 2 (1962), 1122–1128 MR0148231 0139.10803 Google Scholar[15] M. V. Fedorjuk, On stability in C of the Cauchy problem for difference equations and partial differential equations, Ž. Vyčisl. Mat. i Mat. Fiz., 7 (1967), 510–540 MR0214296 0185.42401 Google Scholar[16] George E. Forsythe and , Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons Inc., New York, 1960x+444 MR0130124 0099.11103 Google Scholar[17] Avner Friedman, Generalized functions and partial differential equations, Prentice-Hall Inc., Englewood Cliffs, N.J., 1963xii+340 MR0165388 0116.07002 CrossrefGoogle Scholar[18] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964xiv+347 MR0181836 0144.34903 Google Scholar[19] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7 (1954), 345–392 MR0062932 0059.08902 CrossrefISIGoogle Scholar[20] I. M. Gelfand and , G. E. Schilow, Verallgemeinerte Funktionen (Distributionen). III. Einige Fragen zur Theorie der Differentialgleichungen, Hochschulbücher für Mathematik, Band 49, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964, 195– MR0165359 0133.37503 Google Scholar[21] S. K. Godunov and , V. S. Ryabenkii, Introduction to the theory of difference schemes, Interscience, New York, 1964 Google Scholar[22] Susan G. Hahn, Stability criteria for difference schemes, Comm. Pure Appl. Math., 11 (1958), 243–255 MR0097886 0082.12301 CrossrefISIGoogle Scholar[23] G. W. Hedstrom, The near-stability of the Lax-Wendroff method, Numer. Math., 7 (1965), 73–77 10.1007/BF01397974 MR0174182 0131.34301 CrossrefGoogle Scholar[24] G. W. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J., 13 (1966), 393–416 10.1307/mmj/1028999598 MR0203340 0148.04401 CrossrefISIGoogle Scholar[25] G. W. Hedstrom, The rate of convergence of some difference schemes, SIAM J. Numer. Anal., 5 (1968), 363–406 10.1137/0705031 MR0230489 0283.65051 LinkISIGoogle Scholar[26] Lars Hörmander, Estimates for translation invariant operators in $L\sp{p}$ spaces, Acta Math., 104 (1960), 93–140 MR0121655 0093.11402 CrossrefISIGoogle Scholar[27] Olov Johansson and , Heinz-Otto Kreiss, Über das Verfahren der zentralen Differenzen zur Lösung des Cauchyproblems für partielle Differentialgleichungen, Nordisk Tidskr. Informations-Behandling, 3 (1963), 97–107 MR0166936 0135.38005 Google Scholar[28] Fritz John, On integration of parabolic equations by difference methods. I. Linear and quasi-linear equations for the infinite interval, Comm. Pure Appl. Math., 5 (1952), 155–211 MR0047885 0047.33703 CrossrefISIGoogle Scholar[29] M. L. Juncosa and , D. M. Young, On the order of convergence of solutions of a difference equation to a solution of the diffusion equation, J. Soc. Indust. Appl. Math., 1 (1953), 111–135 10.1137/0101007 MR0060907 0053.46303 LinkGoogle Scholar[30] M. L. Juncosa and , David Young, On the Crank-Nicolson procedure for solving parabolic partial differential equations, Proc. Cambridge Philos. Soc., 53 (1957), 448–461 MR0088804 0079.33804 CrossrefGoogle Scholar[31] Koji Kasahara and , Masaya Yamaguti, Strongly hyperbolic systems of linear partial differential equations with constant coefficients, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 33 (1960/1961), 1–23 MR0118971 0098.29702 Google Scholar[32] Tosio Kato, Estimation of iterated matrices, with application to the von Neumann condition, Numer. Math., 2 (1960), 22–29 10.1007/BF01386205 MR0109826 0119.32001 CrossrefGoogle Scholar[33] Tosio Kato, Some mapping theorems for the numerical range, Proc. Japan Acad., 41 (1965), 652–655 MR0222693 0143.36702 CrossrefGoogle Scholar[34] Heniz-Otto Kreiss, Über die Lösung des Cauchyproblems für lineare partielle Differentialgleichungen mit Hilfe von Differenzengleichungen. I. Stabile Systeme von Differenzengleichungen, Acta Math., 101 (1959), 179–199 MR0130474 0087.29901 CrossrefISIGoogle Scholar[35] Heinz-Otto Kreiss, Über die Differenzapproximation hoher Genauigkeit bei Anfangswertproblemen für partielle Differentialgleichungen, Numer. Math., 1 (1959), 186–202 10.1007/BF01386384 MR0110206 0092.13002 CrossrefGoogle Scholar[36] Heinz-Otto Kreiss, Über Matrizen die beschränkte Halbgruppen erzeugen, Math. Scand., 7 (1959), 71–80 MR0110952 0090.09801 CrossrefGoogle Scholar[37] Heinz-Otto Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, Nordisk Tidskr. Informations-Behandling, 2 (1962), 153–181 MR0165712 0109.34702 CrossrefGoogle Scholar[38] Heinz-Otto Kreiss, Über sachgemässe Cauchyprobleme, Math. Scand., 13 (1963), 109–128 MR0168921 0145.13303 CrossrefGoogle Scholar[39] Heinz-Otto Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math., 17 (1964), 335–353 MR0166937 0279.35059 CrossrefISIGoogle Scholar[40] Heinz-Otto Kreiss and , Einar Lundqvist, On difference approximations with wrong boundary values, Math. Comp., 22 (1968), 1–12 MR0228193 0164.17901 CrossrefISIGoogle Scholar[41] P. D. Lax, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math., 11 (1958), 175–194 MR0098110 0086.01603 CrossrefISIGoogle Scholar[42] Peter D. Lax, On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients, Comm. Pure Appl. Math., 14 (1961), 497–520 MR0145686 0102.11701 CrossrefISIGoogle Scholar[43] P. D. Lax and , L. Nirenberg, On stability for difference schemes: A sharp form of Ga˙rding's inequality, Comm. Pure Appl. Math., 19 (1966), 473–492 MR0206534 0185.22801 CrossrefISIGoogle Scholar[44] P. D. Lax and , R. D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math., 9 (1956), 267–293 MR0079204 0072.08903 CrossrefISIGoogle Scholar[45] Peter Lax and , Burton Wendroff, Systems of conservation laws, Comm. Pure Appl. Math., 13 (1960), 217–237 MR0120774 0152.44802 CrossrefISIGoogle Scholar[46] Peter D. Lax and , Burton Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Comm. Pure Appl. Math., 17 (1964), 381–398 MR0170484 0233.65050 CrossrefISIGoogle Scholar[47] Milton Lees, Energy inequalities for the solution of differential equations, Trans. Amer. Math. Soc., 94 (1960), 58–73 MR0114045 0104.34903 CrossrefGoogle Scholar[48] Milton Lees, The solution of positive-symmetric hyperbolic systems by difference methods, Proc. Amer. Math. Soc., 12 (1961), 195–204 MR0129561 0096.29905 CrossrefGoogle Scholar[49] Walter Littman, The wave operator and $L\sb{p}$ norms, J. Math. Mech., 12 (1963), 55–68 MR0146521 0127.31705 ISIGoogle Scholar[50] Jörgen Löfström, Besov spaces in theory of approximation, Ann. Mat. Pura Appl. (4), 85 (1970), 93–184 MR0267332 0193.41401 CrossrefGoogle Scholar[51] John J. H. Miller, On power-bounded operators and operators satisfying a resolvent condition, Numer. Math., 10 (1967), 389–396 10.1007/BF02162872 MR0220080 0166.41504 CrossrefISIGoogle Scholar[52] John Miller and , Gilbert Strang, Matrix theorems for partial differential and difference equations, Math. Scand., 18 (1966), 113–133 MR0209308 0144.13404 CrossrefISIGoogle Scholar[53] K. W. Morton, On a matrix theorem due to H. O. Kreiss, Comm. Pure Appl. Math., 17 (1964), 375–379 MR0170460 0146.13702 CrossrefISIGoogle Scholar[54] K. W. Morton and , S. Schechter, On the stability of finite difference matrices, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 119–128 MR0182170 0133.38101 LinkGoogle Scholar[55] T. S. Motzkin and , Olga Taussky, Pairs of matrices with property ${\rm L}$, Trans. Amer. Math. Soc., 73 (1952), 108–114 MR0049855 0048.00905 ISIGoogle Scholar[56] George G. O'Brien, , Morton A. Hyman and , Sidney Kaplan, A study of the numerical solution of partial differential equations, J. Math. Physics, 29 (1951), 223–251 MR0040805 0042.13204 CrossrefISIGoogle Scholar[57] Beresford Parlett, Accuracy and dissipation in difference schemes, Comm. Pure Appl. Math., 19 (1966), 111–123 MR0196957 0173.44703 CrossrefISIGoogle Scholar[58] Jaak Peetre and , Vidar Thomée, On the rate of convergence for discrete initial-value problems, Math. Scand., 21 (1967), 159–176 (1969) MR0255085 0172.13902 CrossrefISIGoogle Scholar[59] I. G. Petrovskii, Über das Cauchysche Problem für Systems von partiellen Differentialgleichungen, Rec. Math. (Mat. Sb.), 2 (1937), 814–868 0018.40503 Google Scholar[60] I. G. Petrovskii, Über das Cauchysche Problem für eine System linearer partieller Differentialgleichungen im Gebiete der nichtanalytischen Funktionen, Bull. Univ. d'Etat Moscow, 1 (1938), 1–74 0024.03702 Google Scholar[61] Robert D. Richtmyer and , K. W. Morton, Difference methods for initial-value problems, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967xiv+405 MR0220455 0155.47502 Google Scholar[62] V. S. Ryabenkii and , A. F. Filippov, Über die Stabilität von Differenzengleichungen, Deutscher Verlag der Wissenschaften, Berlin, 1960 0073.33905 Google Scholar[63] V. K. Saul'yev, Integration of equations of parabolic type by the method of nets, Pergamon Press, Oxford, 1964 0128.11803 Google Scholar[64] Martin H. Schultz, A generalization of the Lax equivalence theorem, Proc. Amer. Math. Soc., 17 (1966), 1034–1035 MR0198262 0184.35703 CrossrefISIGoogle Scholar[65] Martin H. Schultz, Difference methods for Cauchy problems in $S\sp{\prime}$, J. Math. Mech., 16 (1967), 1117–1129 MR0216146 0146.33204 ISIGoogle Scholar[66] S. I. Serdjukova, A study of stability in C of explicit difference schemes with constant real coefficients which are stable in $l\sb{2}$, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 365–370 MR0165710 Google Scholar[67] S. I. Serdjukova, Stability in C of linear difference schemes with constant real coefficients, Ž. Vyčisl. Mat. i Mat. Fiz., 6 (1966), 477–486 MR0205502 0173.44501 Google Scholar[68] S. I. Serdjukova, On stability in the uniform metric of systems of difference equations, Ž. Vyčisl. Mat. i Mat. Fiz., 7 (1967), 497–509 MR0216188 0185.42303 Google Scholar[69] Hans J. Stetter, Maximum bounds for the solutions of initial value problems for partial difference equations, Numer. Math., 5 (1963), 399–424 10.1007/BF01385905 MR0169393 0114.32503 CrossrefGoogle Scholar[70] Gilbert Strang, Difference methods for mixed boundary-value problems, Duke Math. J., 27 (1960), 221–231 10.1215/S0012-7094-60-02720-4 MR0114989 0091.26904 CrossrefISIGoogle Scholar[71] G. Strang, Trigonometric polynomials and difference methods of maximum accuracy, J. Math. and Phys., 41 (1962), 147–154 0111.31601 CrossrefISIGoogle Scholar[72] Gilbert Strang, Polynomial approximation of Bernstein type, Trans. Amer. Math. Soc., 105 (1962), 525–535 MR0141921 0119.28703 CrossrefGoogle Scholar[73] Gilbert Strang, Accurate partial difference methods. I. Linear Cauchy problems, Arch. Rational Mech. Anal., 12 (1963), 392–402 10.1007/BF00281235 MR0146970 0113.32303 CrossrefISIGoogle Scholar[74] Gilbert Strang, Accurate partial difference methods. II. Non-linear problems, Numer. Math., 6 (1964), 37–46 10.1007/BF01386051 MR0166942 0143.38204 CrossrefGoogle Scholar[75] Gilbert Strang, Necessary and insufficient conditions for well-posed Cauchy problems, J. Differential Equations, 2 (1966), 107–114 10.1016/0022-0396(66)90066-0 MR0194722 0131.09102 CrossrefISIGoogle Scholar[76] Gilbert Strang, On strong hyperbolicity, J. Math. Kyoto Univ., 6 (1967), 397–417 MR0217439 0174.15103 CrossrefGoogle Scholar[77] Gilbert Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506–517 10.1137/0705041 MR0235754 LinkISIGoogle Scholar[78] Vidar Thomée, A stable difference scheme for the mixed boundary problem for a hyperbolic, first-order system in two dimensions, J. Soc. Indust. Appl. Math., 10 (1962), 229–245 MR0154422 0107.11401 LinkISIGoogle Scholar[79] Vidar Thomée, A predictor-corrector type scheme for the mixed boundary problem for a hyperbolic first-order system in two dimensions, J. Soc. Indust. Appl. Math., 11 (1963), 964–975 MR0159433 0138.40104 LinkISIGoogle Scholar[80] Vidar Thomée, A difference method for a mixed boundary problem for symmetric hyperbolic systems, Arch. Rational Mech. Anal., 13 (1963), 122–136 MR0152135 0113.32403 CrossrefISIGoogle Scholar[81] Vidar Thomée, Stability of difference schemes in the maximum-norm, J. Differential Equations, 1 (1965), 273–292 MR0176240 0259.65086 CrossrefISIGoogle Scholar[82] Vidar Thomée, J. H. Bramble, On maximum-norm stable difference operatorsNumerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, 125–151 MR0210332 0149.11702 Google Scholar[83] Vidar Thomée, Parabolic difference operators, Math. Scand., 19 (1966), 77–107 MR0209693 0171.13804 CrossrefISIGoogle Scholar[84] Vidar Thomée, Generally unconditionally stable difference operators, SIAM J. Numer. Anal., 4 (1967), 55–69 MR0213051 0168.14202 LinkGoogle Scholar[85] V. Thomée, Stability of difference schemes in Lp, 1964, XIV Congr. Math. Scand., to appear Google Scholar[86] V. Ja. Urm, Necessary and sufficient conditions for the stability of a system of difference equations, Dokl. Akad. Nauk SSSR, 139 (1961), 40–43 MR0130476 0109.31001 Google Scholar[87] Richard S. Varga, On higher order stable implicit methods for solving parabolic partial differential equations, J. Math. and Phys., 40 (1961), 220–231 MR0140191 0106.10805 CrossrefGoogle Scholar[88] Wolfgang Wasow, On the accuracy of implicit difference aproximations to the equation of heat flow, Math. Tables Aids Comput., 12 (1958), 43–55 MR0100362 0082.33301 CrossrefGoogle Scholar[89] H. F. Weinberger, Error bounds in finite-difference approximation to solutions of symmetric hyperbolic systems, J. Soc. Indust. Appl. Math., 7 (1959), 49–75 10.1137/0107004 MR0128084 0092.32704 LinkISIGoogle Scholar[90] Burton Wendroff, On centered difference equations for hyperbolic systems, J. Soc. Indust. Appl. Math., 8 (1960), 549–555 10.1137/0108040 MR0116472 0096.32502 LinkISIGoogle Scholar[91] Burton Wendroff, Well-posed problems and stable difference operators, SIAM J. Numer. Anal., 5 (1968), 71–82 10.1137/0705005 MR0223110 0157.22903 LinkISIGoogle Scholar[92] Olof B. Widlund, On the stability of parabolic difference schemes, Math. Comp., 19 (1965), 1–13 MR0170479 0125.07402 CrossrefISIGoogle Scholar[93] Olof B. Widlund, Stability of parabolic difference schemes in the maximum norm, Numer. Math., 8 (1966), 186–202 10.1007/BF02163187 MR0196965 0173.44805 CrossrefISIGoogle Scholar[94] O. B. Widlund, On the rate of convergence for parabolic difference schemes, to appear Google Scholar[95] Masaya Yamaguti, Some remarks on the Lax-Wendroff finite-difference scheme for nonsymmetric hyperbolic systems, Math. Comp., 21 (1967), 611–619 MR0224308 0153.46402 CrossrefISIGoogle Scholar[96] Masaya Yamaguti and , Koji Kasahara, Sur le système hyperbolique à coefficients constants, Proc. Japan Acad., 35 (1959), 547–550 MR0113040 0098.29701 CrossrefGoogle Scholar[97] Kôsaku Yosida, Functional analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York, 1965xi+458 MR0180824 0126.11504 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails A Generalized Polar-Coordinate Integration Formula with Applications to the Study of Convolution Powers of Complex-Valued Functions on $${\mathbb {Z}}^d$$4 March 2022 | Journal of Fourier Analysis and Applications, Vol. 28, No. 2 Cross Ref Polynomial control on stability, inversion and powers of matrices on simple graphsJournal of Functional Analysis, Vol. 276, No. 1 Cross Ref On the Convolution Powers of Complex Functions on $$\mathbb {Z}$$ Z7 March 2015 | Journal of Fourier Analysis and Applications, Vol. 21, No. 4 Cross Ref Convolution powers of complex functions on Z1 February 2014 | Mathematische Nachrichten, Vol. 287, No. 10 Cross Ref Error estimates for a class of partial functional differential equation with small dissipationApplied Mathematics and Computation, Vol. 226 Cross Ref Symbolic-Numerical Method for the Stability Investigation of Difference Schemes on a Computer1 March 2011 Cross Ref On the Stability of a Monotone Difference Scheme for the Burgers EquationDifferential Equations, Vol. 41, No. 7 Cross Ref Integral representation of local and global diffeomorphismsNonlinear Analysis: Real World Applications, Vol. 4, No. 2 Cross Ref Bibliography9 January 2012 Cross Ref Stability investigation of Runge–Kutta schemes with artificial dissipator on curvilinear grids for the Euler equationsMathematics and Computers in Simulation, Vol. 58, No. 1 Cross Ref From finite differences to finite elementsJournal of Computational and Applied Mathematics, Vol. 128, No. 1-2 Cross Ref Stability and Regularization of Three-Level Difference Schemes with Unbounded Operator Coefficients in Banach SpacesAlexander A. Samarskii, Ivan P. Gavrilyuk, and Vladimir L. Makarov25 July 2006 | SIAM Journal on Numerical Analysis, Vol. 39, No. 2AbstractPDF (185 KB)From finite differences to finite elements A short history of numerical analysis of partial differential equations Cross Ref Application of Computer Algebra Systems for Stability Analysis of Difference Schemes on Curvilinear GridsJournal of Symbolic Computation, Vol. 28, No. 3 Cross Ref Theory of stability and regularization of difference schemes and its application to ill-posed problems of mathematical physicsApplied Numerical Mathematics, Vol. 16, No. 1-2 Cross Ref A Stability Result for Sectorial Operators in Banach BpacesC. Palencia14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 30, No. 5AbstractPDF (1070 KB)Stability of the method of linesNumerische Mathematik, Vol. 62, No. 1 Cross Ref Matrix multiplication operators generating one parameter semigroupsSemigroup Forum, Vol. 42, No. 1 Cross Ref Finite difference methods for linear parabolic equations Cross Ref Adaptive grid refinement for numerical weather predictionJournal of Computational Physics, Vol. 80, No. 1 Cross Ref Regions of stability, equivalence theorems and the Courant-Friedrichs-Lewy conditionNumerische Mathematik, Vol. 49, No. 2-3 Cross Ref Propagation of round-off errors and the role of stability in numerical methods for linear and nonlinear PDEsApplied Mathematical Modelling, Vol. 9, No. 5 Cross Ref Alpha well-posedness, alpha stability, and the matrix theorems of H.-O. KreissNumerische Mathematik, Vol. 46, No. 1 Cross Ref Instability of difference models for hyperbolic initial boundary value problemsCommunications on Pure and Applied Mathematics, Vol. 37, No. 3 Cross Ref Numerical viscosity and the entropy condition for conservative difference schemes1 January 1984 | Mathematics of Computation, Vol. 43, No. 168 Cross Ref Group velocity and reflection phenomena in numerical approximations of hyperbolic equationsJournal of the Franklin Institute, Vol. 315, No. 5-6 Cross Ref A two-dimensional lagrangian difference method of movable meshes — A computing method for compressible radiational hydrodynamic equations with several materialsApplied Mathematics and Mechanics, Vol. 4, No. 2 Cross Ref Some Types of Partial Differential Operators and Associated Well-Posed Problems Cross Ref Analysis of Convergence of Numerical Methods Cross Ref The Significance of the Stability of Difference Schemes in Different $l^p $-SpacesT. Geveci10 July 2006 | SIAM Review, Vol. 24, No. 4AbstractPDF (1303 KB)Group Velocity in Finite Difference SchemesLloyd N. Trefethen10 July 2006 | SIAM Review, Vol. 24, No. 2AbstractPDF (2611 KB)Approximation of operator semigroups of Oharu's class $(C_{(k)})$Tohoku Mathematical Journal, Vol. 34, No. 4 Cross Ref The equivalence of L2-stability, the resolvent condition, and strict H-stabilityLinear Algebra and its Applications, Vol. 41 Cross Ref Energy and group velocity in semi discretizations of hyperbolic equationsMathematics and Computers in Simulation, Vol. 23, No. 4 Cross Ref Convergence of difference approximations for quasilinear hyperbolic systemsHiroshima Mathematical Journal, Vol. 11, No. 3 Cross Ref Stability of Friedrichs's scheme in the maximum norm for hyperbolic systems in one space dimensionApplied Mathematics and Computation, Vol. 7, No. 4 Cross Ref Theoretical and Practical Aspects of Some Initial Boundary Value Problems in Fluid DynamicsJoseph Oliger and Arne Sundström12 July 2006 | SIAM Journal on Applied Mathematics, Vol. 35, No. 3AbstractPDF (3118 KB)On the Lax equivalence theorem equipped with ordersJournal of Approximation Theory, Vol. 19, No. 3 Cross Ref Stability of difference schemes for nonsymmetric linear hyperbolic systemsHiroshima Mathematical Journal, Vol. 7, No. 3 Cross Ref Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficientsHiroshima Mathematical Journal, Vol. 7, No. 1 Cross Ref REFERENCES Cross Ref Numerical Solution of a Diffusion Consumption Problem with a Free BoundaryAlan E. Berger, Melvyn Ciment, and Joel C. W. Rogers14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 12, No. 4AbstractPDF (2304 KB)Initial value problems and difference operators27 August 2006 Cross Ref Local errors of difference approximations to hyperbolic equationsJournal of Computational Physics, Vol. 14, No. 1 Cross Ref A difference method of the projection type for solving the mixed problem for symmetric hyperbolic systemsUSSR Computational Mathematics and Mathematical Physics, Vol. 14, No. 1 Cross Ref The Cauchy problem for systems in Lp and Lp,αArkiv för Matematik, Vol. 11, No. 1-2 Cross Ref SPLINE APPROXIMATION AND DIFFERENCE SCHEMES FOR THE HEAT EQUATION Cross Ref Topics in stability theory for partial difference operators22 August 2006 Cross Ref Introduction to finite difference approximations to initial value problems for partial differential equations22 August 2006 Cross Ref ON THE RATE OF CONVERGENCE OF DIFFERENCE SCHEMES FOR HYPERBOLIC EQUATIONS Cross Ref Contractive difference schemes for symmetric hyperbolic systems1 January 1971 | Mathematics of Computation, Vol. 25, No. 114 Cross Ref Volume 11, Issue 2| 1969SIAM Review History Submitted:15 August 1968Published online:18 July 2006 InformationCopyright © 1969 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1011033Article page range:pp. 152-195ISSN (print):0036-1445ISSN (online):1095-7200Publisher:Society for Industrial and Applied Mathematics
Referência(s)