Artigo Acesso aberto Revisado por pares

Episodic Learner Modeling

1996; Wiley; Volume: 20; Issue: 2 Linguagem: Inglês

10.1016/s0364-0213(99)80006-8

ISSN

1551-6709

Autores

Gerhard Weber,

Tópico(s)

Speech and dialogue systems

Resumo

Cognitive ScienceVolume 20, Issue 2 p. 195-236 Free Access Episodic Learner Modeling Gerhard Weber, Corresponding Author Gerhard Weber University of Trier Department of Psychology, University of Trier, D-54286 Trier, Germany. E-mail: <[email protected]>Search for more papers by this author Gerhard Weber, Corresponding Author Gerhard Weber University of Trier Department of Psychology, University of Trier, D-54286 Trier, Germany. E-mail: <[email protected]>Search for more papers by this author First published: April 1996 https://doi.org/10.1207/s15516709cog2002_2Citations: 31AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Modeling the learner is a central aspect of intelligent tutoring systems and knowledge-based help systems that support learners in complex problem-solving domains. In this article, the episodic learner model ELM is introduced as a hybrid system that analyses novices' solutions to programming tasks based on both rule-based and case-based reasoning. ELM behaves like to a human tutor. Initially, ELM is able to analyze problem solutions based only on its domain knowledge. With increasing knowledge about a particular learner captured in a dynamic episodic case base, it adapts to the learner's individual problem-solving behavior. Two simulation studies were performed to validate the system. The first study shows that the system can learn which rules are applied successfully to diagnose code produced by programmers and that using this information reduces the computational effort of diagnoses. Using information from the episodic learner model additionally speeds up the diagnostic process. The second study shows that ELM is able to predict individual solutions. Finally, correspondences and differences to related systems are discussed. REFERENCES Anderson, J.R. (1983). The architecture of cognition. Cambridge , MA : Harvard University Press. Google Scholar Anderson, J.R. (1984). Cognitive psychology and intelligent tutoring. Proceedings of the Sixth Annual Conference of the Cognitive Science Society. Hillsdale , NJ : Erlbaum. Google Scholar Anderson, J.R. (1987). Skill acquisition: Compilation of weak-method problem solutions. Psychological Review, 94, 192–210. 10.1037/0033-295X.94.2.192 Web of Science®Google Scholar Anderson, J.R. (1993). Rules of the mind. Hillsdale , NJ : Erlbaum. Google Scholar Anderson, J.R., Boyle, C.F., Corbett, A.T., & Lewis, M.W. (1990). Cognitive modeling and intelligent tutoring. Artificial Intelligence, 42, 7–49. 10.1016/0004-3702(90)90093-F Web of Science®Google Scholar Anderson, J.R., Conrad, F.G., & Corbett, A.T. (1989). Skill acquisition and the LISP tutor. Cognitive Science, 13, 467–505. 10.1207/s15516709cog1304_1 Web of Science®Google Scholar Anderson, J.R., & Reiser, B.J. (1985). The LISP tutor. Byte, 10(4), 159–174. Web of Science®Google Scholar Barletta, R., & Mark, W. (1988). Explanation-Based Indexing of Cases. In J.L. Kolodner (Eds.), Proceedings of the DARPA-workshop on Case-Based Reasoning. San Mateo , CA : Morgan Kaufmann. Google Scholar Bonar, J., & Cunningham, R. (1988). BRIDGE: An intelligent tutor for thinking about programming. In J. Self (Ed.), Artificial intelligence and human learning: Intelligent computer-aided instruction. London : Chapman & Hall. Google Scholar Carr, B., & Goldstein, I. (1977). Overlays: A theory of modelling for computer aided instruction (AI Memo 406). Cambridge , MA : Massachusetts Institute of Technology, AI Laboratory. Google Scholar Clancey, W.J. (1986). Qualitative student models. Annual Review of Computer Science, 1, 381–450. 10.1146/annurev.cs.01.060186.002121 Web of Science®Google Scholar Corbett, A.T., & Anderson, J.R. (1992). Knowledge tracing in the ACT programming tutor. Proceedings of Fourteenth Annual Conference of the Cognitive Science Society. Hillsdale , NJ : Erlbaum. Google Scholar DeJong, G. (1988). An introduction to explanation-based learning. In H.E. Shrobe & AAAI (Eds.), Exploring artificial intelligence. San Mateo , CA : Morgan Kaufmann. 10.1016/B978-0-934613-67-5.50006-X Web of Science®Google Scholar DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 1, 145–176. 10.1007/BF00114116 Google Scholar Escott, J. A., & McCalla, G.I. (1988). Problem solving by analogy: A source of errors in novice LISP programming. Proceedings of Intelligent Tutoring Systems ITS-88, Montreal, June 1–3. Montreal , Canada : Université de Montreal. Web of Science®Google Scholar Greer, J.E., McCalla, G.I., Price, B., & Holt, P. (1994). Supporting the learning of recursion at a distance. In T. Ottmann & I. Tomek (Eds.), Proceedings of ED-MEDIA 1994. Charlottesville , VA : AACE. Google Scholar K.J. Hammond (Ed.). (1989). Proceedings of the Second Workshop on Case-Based Reasoning. San Mateo , CA : Morgan Kaufmann. Google Scholar Hammond, K.J., & Hurwitz, N. (1988). Extracting diagnostic features from explanations. In J.L. Kolodner (Eds.), Proceedings of the DA RPA – workshop on Case-Based Reasoning. San Mateo , CA : Morgan Kaufmann. Google Scholar Johnson W.L. (1986). Intention-based diagnosis of novice programming errors. London : Pitman. Google Scholar Johnson, W.L. (1988). Modelling programmer's intentions. In J. Self (Ed.), Artificial intelligence and human learning: Intelligent computer-aided instruction. London : Chapman & Hall. Google Scholar Johnson, W.L., & Soloway, E. (1987). PROUST: An automatic debugger for Pascal programs. In S. Kearsley (Ed.), Artificial intelligence and instruction. Applications and methods. Reading , MA : Addison-Wesley. Google Scholar Köhne, A., & Weber, G. (1987). STRUEDI: A LISP-structure editor for novice programmers. In H.J. Bullinger & B. Schackel (Eds.), Human-Computer Interaction INTERACT 1987. Amsterdam : North-Holland. Google Scholar Kolodner, J.L. (1993). Case-based reasoning. San Mateo , CA : Morgan Kaufmann. 10.1016/B978-1-55860-237-3.50005-4 Google Scholar Laird, J.E., Newell, A., & Rosenbloom, P.S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33, 1–64. 10.1016/0004-3702(87)90050-6 Web of Science®Google Scholar Laird, J.E., Rosenbloom, P.S., & Newell, A. (1985). Chunking in SOAR: The anatomy of a general learning mechanism. Machine Learning, 1, 11–46. 10.1007/BF00116249 Google Scholar Lebowitz, M. (1983). Generalization from natural language text. Cognitive Science, 7, 1–40. 10.1207/s15516709cog0701_1 Web of Science®Google Scholar Levine, M. (1966). Hypothesis behavior by humans during discrimination learning. Journal of Experimental Psychology, 71, 331–338. 10.1037/h0023006 CASPubMedWeb of Science®Google Scholar Martin, C.E. (1989). Case-based parsing. In C.K. Riesbeck & R. Schank (Eds.), Inside case-based reasoning. Hillsdale , NJ : Erlbaum. Google Scholar McCalla, G.I., & Greer, J.G. (1988). Intelligent advising in problem solving domains: the SCENT-3 architecture. Proceedings of the Intelligent Tutoring Systems-88 Conference. Montreal , Canada : Université de Montreal. Google Scholar McCalla, G.I., & Greer, J.E. (1993). Two and one-half approaches to helping novices learn recursion. In E. Lemut, B. Boulay, & G. Dettori (Eds.), Cognitive models and intelligent environments for learning programming. Berlin : Springer-Verlag. Google Scholar Merrill, D.C., Reiser, B.J., Beekelaar, R., & Hamid, A. (1992). Making processes visible: Scaffolding learning with reasoning-congruent representations. In C. Frasson, G. Gauthier, & G.I. McCalla (Eds.), Proceedings of the Second International Conference, Intelligent Tutoring Systems 1992. Berlin : Springer-Verlag. Google Scholar Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S.T. (1986). Explanation-based generalization: A unifying view. Machine Learning, 1, 47–80. 10.1007/BF00116250 Google Scholar Möbus, C., & Schröder, O. (1993). The acquisition of functional planning and programming knowledge: Diagnosis, modeling, and user-adapted help. In G. Strube & K.F. Wender (Eds.), The cognitive psychology of knowledge. The German Wissenspsychologie project. Amsterdam : Elsevier (North-Holland). Google Scholar Möbus, C., Schröder, O., & Thole, H.J. (1995). Online modeling the novice-expert shift in programming skills on a rule-schema-case partial order. In K.F. Wender, F. Schmalhofer, & H.-D. Böcker (Eds.), Cognition and computer programming. Norwood , NJ : Ablex. Google Scholar Murray, W.R. (1988). Automatic program debugging for intelligent tutoring systems. London : Pitman. Google Scholar Newell, A. (1990). Unified theories of cognition. Cambridge , MA : Harvard University Press. Google Scholar Newman, D. (1989). Is a student model necessary? Apprenticeship as a model for ITS. In D. Bierman, J. Breuker, & J. Sandberg (Eds.), Artificial intelligence and education. Amsterdam : IOS. Google Scholar Nicolson, R.I. (1992). Diagnosis can help intelligent tutoring. Proceedings of Fourteenth Annual Conference of the Cognitive Science Society. Hillsdale , NJ : Erlbaum. Google Scholar Ohlsson, S. (1986). Some principles of intelligent tutoring. Instructional Science, 14, 293–326. 10.1007/BF00051825 Web of Science®Google Scholar Owens, C. (1989). Plan transformations as abstract indices. In K.J. Hammond (Eds.), Proceeedings of the Second Workshop on Case-Based Reasoning. San Mateo , CA : Morgan Kaufmann. Google Scholar Reiser, B.J., Beekelaar, R., Tyle, A., & Merrill, D. (1991). GIL: Scaffolding learning to program with reasoning-congruent representations. In L. Birnbaum (Ed.), Proceedings of the International Conference on the Learning Sciences. Charlottesville , VA : Association for the Advancement of Computing in Education. Google Scholar Rich, E. (1985). User modelling: Some approaches: Proceedings of the Ninth International Joint Conference on Artificial Intelligence. Hillsdale , NJ : Erlbaum. Google Scholar Riesbeck, C.K., & Martin, C.E. (1986). Direct memory access parsing. In J.L. Kolodner & C.K. Riesbeck (Eds.), Experience, memory, and reasoning. Hillsdale , NJ : Erlbaum. Google Scholar Riesbeck, C.K., & Schank, R.C. (1989). Inside case-based reasoning. Hillsdale , NJ : Erlbaum. Google Scholar Rosenbloom, P.S., Newell, A., & Laird, J.E. (1991). Towards the knowlege level in Soar: The role of the architecture in the use of knowledge. In K. VanLehn (Ed.), Architectures for intelligence. Hillsdale , NJ : Erlbaum. Google Scholar Sandberg, J., & Barnard, Y. (1992). Interviews on AI and education: Beverley Woolf and Roger Schank. AI-Communications, 5, 148–155. Google Scholar Self, J. (1974). Student models in computer-aided instruction. International Journal of Man-Machine Studies, 6, 261–276. 10.1016/S0020-7373(74)80005-2 Web of Science®Google Scholar Smith, E.E., Langston, C., & Nisbett, R.E. (1992). The case for rules in reasoning. Cognitive Science, 16, 1–40. 10.1207/s15516709cog1601_1 Web of Science®Google Scholar Strube, G., & Janetzko, D. (1990). Episodisches Wissen und fallbasiertes Schliessen: Aufgaben für die Wissendiagnostik und die Wissenspsychologie. [Episodic knowledge and case-based reasoning: Tasks for knowledge diagnosis and for the psychology of knowledge]. Schweizerische Zeitschrift für Psychologic 49, 211–221. Web of Science®Google Scholar Swartout, B. (1985). Explanation and the role of the user model: How much will it help? Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Altos , CA : Morgan Kaufmann. Google Scholar Tack, W.H., Wallach, D., Unz, D., Henss, R., & Egler, R. (1993). Design and implementation of a representation system for human knowledge. In G. Strube & K.F. Wender (Eds.), The cognitive psychology of knowledge. The German Wissenpsychologie project. Amsterdam : Elsevier (North-Holland). Google Scholar Veloso, M. (1994). Prodigy/Analogy: Analogical reasoning in general problem solving. In S. Wess, K.-D. Althoff, & M.M. Richter (Eds.), Topics in case-based reasoning. Berlin : Springer-Verlag. Google Scholar Veloso, M., & Carbonell, J. (1993). Derivational analogy in PRODIGY: Automating case acquisition, storage, and utilization. Machine Learning, 10, 249–278. 10.1023/A:1022686910523 Web of Science®Google Scholar Vorberg, D., & Goebel, R. (1991). Das Lösen rekursiver Programmierprobleme: Rekursions-schemata [Solving recursive programming problems: Recursive schemata]. Kognition-swissenschaft, 1, 83–95. Google Scholar Waloszek, G. (1995). GLUE—A Graphical LISP environment for beginners. In K.F. Wender, F. Schmalhofer, & H.-D. Böcker (Eds.), Cognition and computer programming. Norwood , NJ : Ablex. Web of Science®Google Scholar Weber, G. (1988). Cognitive diagnosis and episodic modelling in an intelligent LISP-tutor. Proceeedings of Intelligent Tutoring Systems ITS-88, Montreal, June 1–3, Montreal , Canada : Université de Montreal. Google Scholar Weber, G. (1991). Explanation-based retrieval in a case-based learning model. Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Hillsdale , NJ : Erlbaum. Google Scholar Weber, G. (1993). Analogies in an intelligent programming environment for learning LISP. In E. Lemut, B. Boulay, & G. Dettori (Eds.), Cognitive models and intelligent environments for learning programming. Berlin : Springer-Verlag. Google Scholar Weber, G. (1994). Fallbasiertes Lernen und Analogien: Unterstützung von Problemlöse- und Lernprozessen in einem adaptiven Lernsystem [Case-based learning and analogies: Supporting problem-solving and learning processes in an adaptive learning system]. Weinheim : Psychologie Verlags Union. Google Scholar Weber, G. (1995). Examples and remindings in a case-based help system. In J.-P. Haton, M. Keane, & M. Manago (Eds.), Advances in case-based reasoning. Selected Papers of the Second European Workshop, EWCBR-94, Chantilly, France. Berlin : Springer-Verlag. Google Scholar Weber, G., & Bögelsack, A. (1995). Representation of programming episodes in the ELM model. In K.F. Wender, F. Schmalhofer, & H.-D. Böcker (Eds.), Cognition and computer programming. Norwood , NJ : Ablex. Google Scholar Weber, G., Bögelsack, A., & Wender, K.F. (1993). When can individual student models be useful? In G. Strube & K.F. Wender (Eds.), The cognitive psychology of knowledge. The German Wissenspsychologie project. Amsterdam : Elsevier (North-Holland). Google Scholar Weber, G., & Möllenberg, A. (1994). ELM-PE: A knowledge-based programming environment for learning LISP. In T. Ottmann & I. Tomek (Eds.), Proceedings of ED-MEDIA 1994. Charlottesville , VA : Association for the Advancement of Computing in Education. Google Scholar Weber, G., & Möllenberg, A. (1995). ELM programming environment: A tutoring system for LISP beginners. In K.F. Wender, F. Schmalhofer, & H.-D. Böcker (Eds.), Cognition and computer programming. Norwood , NJ : Ablex. Google Scholar Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and cognitive approaches to the communication of knowledge. Los Altos , CA : Morgan Kaufmann. Google Scholar Wolstencroft, J. (1989). Restructuring, reminding, repair: What's missing from models of analogy. AI Communications, 2, 58–71. Google Scholar Citing Literature Volume20, Issue2April 1996Pages 195-236 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX