HPMA‐based Biodegradable Hydrogels Containing Different Forms of Doxorubicin Antitumor Effects and Biocompatibility a
1997; Wiley; Volume: 831; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1997.tb52184.x
ISSN1749-6632
AutoresBlanka Řı́hová, J. Šrogl, M. Jelı́nková, Ondřej Hovorka, MAGDA BUREŠOVÁ, Vladimír Šubr, Karel Ulbrich,
Tópico(s)Graphene and Nanomaterials Applications
ResumoAnnals of the New York Academy of SciencesVolume 831, Issue 1 p. 57-71 HPMA-based Biodegradable Hydrogels Containing Different Forms of Doxorubicin Antitumor Effects and Biocompatibility† BLANKA ŘÍHOVÁ, Corresponding Author BLANKA ŘÍHOVÁ Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech Republic This research was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (grant No. 720 407) and by the Grant Agency of the Czech Republic (grant No. 307/96/K226). Author to whom correspondence should be addressed: (+4220) 475 2267; Fax (+4220) 472 11 43; E-mail: [email protected]Search for more papers by this authorJAN ŠROGL, JAN ŠROGL Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorMARKÉTA JELÍNKOVÁ, MARKÉTA JELÍNKOVÁ Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorO. HOVORKA, O. HOVORKA Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorMAGDA BUREŠOVÁ, MAGDA BUREŠOVÁ Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Heyrovskeho sq.2 162 06 Prague 6, Czech RepublicSearch for more papers by this authorVLADIMÍR ŠUBR, VLADIMÍR ŠUBR Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorKAREL ULBRICH, KAREL ULBRICH Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this author BLANKA ŘÍHOVÁ, Corresponding Author BLANKA ŘÍHOVÁ Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech Republic This research was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (grant No. 720 407) and by the Grant Agency of the Czech Republic (grant No. 307/96/K226). Author to whom correspondence should be addressed: (+4220) 475 2267; Fax (+4220) 472 11 43; E-mail: [email protected]Search for more papers by this authorJAN ŠROGL, JAN ŠROGL Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorMARKÉTA JELÍNKOVÁ, MARKÉTA JELÍNKOVÁ Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorO. HOVORKA, O. HOVORKA Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorMAGDA BUREŠOVÁ, MAGDA BUREŠOVÁ Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Heyrovskeho sq.2 162 06 Prague 6, Czech RepublicSearch for more papers by this authorVLADIMÍR ŠUBR, VLADIMÍR ŠUBR Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this authorKAREL ULBRICH, KAREL ULBRICH Institute of Microbiology Academy of Sciences of the Czech Republic Videnska 1083 142 20 Prague 4, Czech RepublicSearch for more papers by this author First published: 17 December 2006 https://doi.org/10.1111/j.1749-6632.1997.tb52184.xCitations: 12Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 N. A. Peppas, Ed. 1987. Hydrogels in Medicine and Pharmacy, vols. 1–3. CRC Press. Boca Raton , FL . Google Scholar 2 Lee, P. I. 1988. Synthetic hydrogels for drug delivery: Preparation, characterization. and release kinetics. In Controlled Release Systems: Fabrication Technology, Vol. 2. D. Hsieh, Ed. CRC Press. Boca Raton , FL . Google Scholar 3 Brøndsted, H. & J. Kopeček 1991. Hydrogels for site-specific drug delivery to colon: In vitro and in vivo degradation. Pharm. Res. 9: 584–592. Google Scholar 4 Park, K. 1988. Enzyme-digestible swelling hydrogels as platforms for long term oral drug delivery: Synthesis and characterization. Biomaterials 9: 435–441. 10.1016/0142-9612(88)90009-9 CASPubMedWeb of Science®Google Scholar 5 Shalaby, W. S. W., W. E. Blevins & K. Park 1991. Gastric retention of enzymedigestible hydrogels in the canine stomach under fasted and fed conditions. ACS Symp. Ser. Polym. Drugs and Drug Deliv. Syst. 469: 237–248. 10.1021/bk-1991-0469.ch021 CASWeb of Science®Google Scholar 6 Saffran, M., G. S. Jumar & C. Savariar 1986. A new approach to the oral administration of insulin and other peptide drugs. Science 233: 1081–1084. 10.1126/science.3526553 CASPubMedWeb of Science®Google Scholar 7 Bowersock, T. L., W. S. W. Shalaby, M. Levy, M. L. Samuels, R. Lallone, M. R. White, D. L. Borie, J. Lehmeyer & K. Park 1994. Evaluation of an orally administered vaccine, using hydrogels containing bacterial exotoxins of Pasteurella haemolytica, in cattle. Am. J. Vet. Res. 55: 502–509. CASPubMedWeb of Science®Google Scholar 8 Antonsen, K. P., J. L. Bohnert, Y. Nabeshima, M-S. Sheu, X-S. Wu & A. S. Hoffman 1993. Controlled release of proteins from 2-hydroxyethyl methacrylate copolymer gels. Biomat. Art. Cells & Immob. Biotech. 21: 1–22. 10.3109/10731199309118293 CASPubMedWeb of Science®Google Scholar 9 Kim, S. W., Y. H. Bae & T. Okano 1992. Hydrogels: Swelling, drug loading, and release. Pharm. Res. 9: 283–290. 10.1023/A:1015887213431 CASPubMedWeb of Science®Google Scholar 10 Fresta, M., G. Cavallaro, G. Giammona, E. Wehrli & G. Puglisi 1996. Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drugs. Biomaterials 17: 751–758. 10.1016/0142-9612(96)81411-6 CASPubMedWeb of Science®Google Scholar 11 Marthy, J. J., R. C. Oppenheim & P. Speiser 1978. Nanoparticles-a new colloidal drug delivery system. Pharm. Acta Helv. 53: 17–23. PubMedWeb of Science®Google Scholar 12 Bondi, H. V. & D. G. Pope 1987. Drug delivery systems. In Drug Discovery and Development. M. Williams & J. B. Malick, Eds.: 291–315. The Humana Press, Inc. Clifton , NJ , 1987. 10.1007/978-1-4612-4828-6_11 Google Scholar 13 Heller, J. 1984. Bioerodible systems. In Medical Applications of Controlled Release. Vol. 1. R. S. Langer & D. L. Wise, Eds. CRC Press. Boca Raton , FL . Google Scholar 14 Kopeček, J. 1984. Synthesis of tailor-made soluble polymeric drug carriers. In Recent Advances in Drug Delivery Systems. J. M. Anderson & S. W. Kim, Eds.: 41–62. Plenum Press. New York . 10.1007/978-1-4613-2745-5_4 Google Scholar 15 Říhová, B., P. Kopečkova, J. Strohalm, P. Rossmann, V. Vêtvička & J. Kopeček 1988. Antibody directed affinity therapy applied to the immune system: In vivo effectiveness and limited toxicity of daunomycin conjugates to HPMA copolymers and targeting antibody. Clin. Immunol. Immunopathol. 46: 100–114. 10.1016/0090-1229(88)90010-4 CASPubMedWeb of Science®Google Scholar 16 Kopeček, J. 1990. The potential of water-soluble polymeric carriers in targeted and sitespecific drug delivery. J. Cont. Rel. 11: 279–290. 10.1016/0168-3659(90)90140-O Web of Science®Google Scholar 17 Ulbrich, K. 1991. Water soluble polymeric carriers of drugs. J. Bioact. Compat. Polym. 6: 348–357. CASWeb of Science®Google Scholar 18 Seymour, L. W., K. Ulbrich, S. R. Wedge, I. C. Hume, L. A. McCormick, J. Strohalm & R. Duncan 1991. N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocyte galactose-receptor: Pharmacokinetics in DBA2 mice. Br. J. Cancer 63: 859–866. 10.1038/bjc.1991.190 CASPubMedWeb of Science®Google Scholar 19 Duncan, R. 1992. Drug-polymer conjugates: potential for improved chemotherapy. Anti-cancer Drugs 3: 175–210. 10.1097/00001813-199206000-00001 CASPubMedWeb of Science®Google Scholar 20 Řínová, B. 1995. Antibody-targeted polymer-bound drugs. Folia Microbiol. 40: 367–384. 10.1007/BF02814745 Web of Science®Google Scholar 21 Duncan, R., L. W. Seymour, K. B. O'Hare, P. A. Flanagan, S. Wedge, I. C. Hume, K. Ulbrich, J. Strohalm, V. ŠUbr, F. Spreafico, M. Grandi, M. Ripamonti, M. Farao & A. Surato 1992. Preclinical evaluation of polymer-bound doxorubicin. J. Cont. Rel. 12: 331–346. 10.1016/0168-3659(92)90088-9 Web of Science®Google Scholar 22 ŠUbr, V. & K. Ulbrich Hydrolytically degradable hydrophilic gels and the method for preparation thereof, Eur. Pat. O 434 438 A2. U.S. Pat. 5, 124, 421. Google Scholar 23 Ulbrich, K., V. ŠUbr, L. W. Seymour & R. Duncan 1993. Novel biodegradable hydrogels prepared using the divinylic crosslinking agent N,O-dimethacryloylhydroxylamine. 1. Synthesis and characterisation of rates of gel degradation, and rate of release of model drugs, in vitro and in vivo. J. Cont. Rel. 24: 181–190. 10.1016/0168-3659(93)90177-7 Web of Science®Google Scholar 24 Ulbrich, K., V. ŠUbr, P. Podpêrová & M. Burešova 1995. Synthesis of novel hydrolytically degradable hydrogels for controlled drug release. J. Cont. Rel. 34: 155–165. 10.1016/0168-3659(95)00004-R Web of Science®Google Scholar 25 Kopeček, J. 1984. Controlled biodegradability of polymers-a key to drug delivery systems. Biomaterials 5: 19–25. 10.1016/0142-9612(84)90062-0 CASPubMedWeb of Science®Google Scholar 26 Říhová, B. & J. Kopeček 1985. Biological properties of targetable poly-[N-(2-hydroxypropyl)methacrylamide]-antibody conjugates. J. Cont. Rel. 2: 289–310. 10.1016/0168-3659(85)90052-5 Google Scholar 27 Kopeček, J. & R. Duncan 1987. Poly-[N-(2-hydroxypropyl)methacrylamide] macromolecules as drug carrier systems. In Polymers in Controlled Drug Delivery, L. Illum & S. S. Davis, Eds. John Wright. Bristol , UK . Google Scholar 28 Tarnowski, G. S., P. Ralph & C. Ch. Stock 1979. Sensitivity to chemotherapeutic and immunomodulating agents of two mouse lymphomas and of a macrophage tumor. Cancer Res. 39: 3964–3967. CASPubMedWeb of Science®Google Scholar 29 J. Strohalm & J. Kopeček 1978. Poly-N-(2-hydroxypropyl)methacrylamide. I. Radical polymerization. Agnew. Makromol. Chem. 70: 109–118. 10.1002/apmc.1978.050700110 CASWeb of Science®Google Scholar 30 Říhová, B., M. Bilej, V. Vêtvička, K. Ulbrich, J. Strohalm, J. Kopeček & R. Duncan 1989. Biocompatibility of N-(2-hydroxypropyl)methacrylamide copolymers containing adriamycin. Biomaterials 10: 335–342. 10.1016/0142-9612(89)90075-6 CASPubMedWeb of Science®Google Scholar 31 ŘíHová, B., J. Strohalm, D. Plocová & K. Ulbrich 1990. Selectivity of antibody-targeted anthracycline antibiotics on T lymphocytes. J. Bioact. Compat. Polym. 5: 249–266. 10.1177/088391159000500302 Google Scholar 32 Říhová, B., J. Strohalm, D. Plocova, V. ŠUbr, J. ŠRogl, M. Jelínková, M. Šírová & K. Ulbrich 1996. Cytotoxic and cytostatic effects of anti-Thy 1.2 targeted doxorubicin and cyclosporin A. J. Cont. Rel. 40: 303–319. 10.1016/0168-3659(95)00198-0 Web of Science®Google Scholar 33 Till, J. E. & E. A. McCulloch 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14: 213–222. 10.2307/3570892 CASPubMedWeb of Science®Google Scholar 34 ŘíHová, B., K. Ulbrich, J. Kopeček & P. Mančal 1983. Immunogenicity of N-(2-hydroxypropyl) methacrylamide copolymers-potential hapten or drug carriers. Folia Microbiol. 28: 217–227. 10.1007/BF02884085 CASPubMedWeb of Science®Google Scholar 35 ŘíHová, B., J. Kopeček, K. Ulbrich, M. Pospíšil & P. Mančal 1984. Effect of the chemical structure of N-(2-hydroxypropyl)methacrylamide copolymers on their ability to induce antibody formation in inbred strains of mice. Biomaterials 5: 143–148. 10.1016/0142-9612(84)90048-6 CASPubMedWeb of Science®Google Scholar 36 ŘíHová, B., A. Jegorov, J. Strohalm, V. Matha, P. Rossman, L. Fornůsek & K. Ulbrich 1992. Antibody-targeted cyclosporin A. J. Cont. Rel. 19: 25–39. 10.1016/0168-3659(92)90063-W Web of Science®Google Scholar 37 Forssen, E. A., R. Male-Brune, J. P. Adler-Moore, M. J. A. Lee, P. G. Schmdt, T. B. Krasieva, S. Shimizu & B. J. Tromberg 1996. Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Res. 56: 2066–2075. CASPubMedWeb of Science®Google Scholar 38 Gayet, J. Ch. & G. Fortier 1995. Drug release from new bioartificial hydrogel. Art. Cells. Blood Subs, and Immob. Biotech. 23: 605–611. 10.3109/10731199509117975 CASPubMedWeb of Science®Google Scholar 39 Ignatius, A. A. & L. E. Claes 1996. In vitro biocompatibility of bioerobatle polymers: poly(L,D,L-lactide) and poly(L-lactide-co-glycolide). Biomaterials 17: 831–839. 10.1016/0142-9612(96)81421-9 CASPubMedWeb of Science®Google Scholar 40 Volfová, I., B. Říhová, V. Vêtvička, P. Rossman, & K. Ulbrich 1992. Biocompatibility of biopolymers. J. Bioact. Compat. Polymers 7: 175–190. 10.1177/088391159200700205 Web of Science®Google Scholar 41 Rínová, B. & I. Ríha 1984. Immunological problems of polymer-bound drugs. CRC Crit. Rev. Therap. Drug Carrier System 1: 311–374. Google Scholar 42 ŠImečková, J., B. Říhová, D. Plocovâ & J. Kopeček 1986. Activity of complement in the presence of N-(2-hydroxypropyl)methacrylamide copolymers. J. Bioact. Compat. Polymers 1: 20–31. 10.1177/088391158600100103 Google Scholar 43 Flanagan, P. A., R. Duncan, B. Říhová, V. ŠUbr & J. Kopeček 1990. Immunogenicity of protein-N-(2-hydroxypropyl)methacrylamide copolymerconjugates in A/J and B10 mice. J. Bioact. Compat. Polymers 5: 151–166. 10.1177/088391159000500201 Google Scholar 44 Abuchowski, A. & F. F. Davis 1979. Preparation and properties of polyethylene glycoltrypsin adducts, Biochim. Biophys. Acta 578: 41–46. 10.1016/0005-2795(79)90110-7 CASPubMedWeb of Science®Google Scholar 45 Sehon, A. H. 1978. Conversion of Xenogeneic Monoclonal Antibodies to Specific Tolerogens, from Advances in the Applications of Monoclonal Antibodies to Clinical Oncology. Royal Post Graduate Medical School. University of London. Google Scholar Citing Literature Volume831, Issue1Bioartificial Organs: Science, Medicine, and TechnologyDecember 1997Pages 57-71 ReferencesRelatedInformation
Referência(s)