Artigo Acesso aberto Revisado por pares

The arithmetic of the values of modular functions and the divisors of modular forms

2004; Cambridge University Press; Volume: 140; Issue: 03 Linguagem: Inglês

10.1112/s0010437x03000721

ISSN

1570-5846

Autores

Jan Hendrik Bruinier, Winfried Kohnen, Ken Ono,

Tópico(s)

Analytic Number Theory Research

Resumo

We investigate the arithmetic and combinatorial significance of the values of the polynomials jn(x) defined by the q-expansion \[\sum_{n=0}^{\infty}j_n(x)q^n:=\frac{E_4(z)^2E_6(z)}{\Delta(z)}\cdot\frac{1}{j(z)-x}.\] They allow us to provide an explicit description of the action of the Ramanujan Theta-operator on modular forms. There are a substantial number of consequences for this result. We obtain recursive formulas for coefficients of modular forms, formulas for the infinite product exponents of modular forms, and new p-adic class number formulas.

Referência(s)
Altmetric
PlumX