Artigo Revisado por pares

Amyotrophic lateral sclerosis IgG-treated neuromuscular junctions develop sensitivity to L-type calcium channel blocker

2000; Wiley; Volume: 23; Issue: 4 Linguagem: Inglês

10.1002/(sici)1097-4598(200004)23

ISSN

1097-4598

Autores

Silvina A. Fratantoni, Gisela Weisz, A.M. Pardal, Ricardo Reisin, Osvaldo D. Uchitel,

Tópico(s)

Nerve injury and regeneration

Resumo

Muscle & NerveVolume 23, Issue 4 p. 543-550 Main Article Amyotrophic lateral sclerosis IgG-treated neuromuscular junctions develop sensitivity to L-type calcium channel blocker Silvina A. Fratantoni PhD, Silvina A. Fratantoni PhD Instituto de Biología Celular y Neurociencias Profesor Eduardo de Robertis, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, ArgentinaSearch for more papers by this authorGisela Weisz MSc, Gisela Weisz MSc Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, ArgentinaSearch for more papers by this authorAna M. Pardal MD, Ana M. Pardal MD Hospital Británico, Buenos Aires, ArgentinaSearch for more papers by this authorRicardo C. Reisin MD, Ricardo C. Reisin MD Hospital Británico, Buenos Aires, ArgentinaSearch for more papers by this authorOsvaldo D. Uchitel MD, PhD, Corresponding Author Osvaldo D. Uchitel MD, PhD [email protected] Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, ArgentinaInstituto de Fisiología y Biología Molecular, Facultad de Ciencias Exactas, Pab. II, 2 piso, Capital Federal 1428, ArgentinaSearch for more papers by this author Silvina A. Fratantoni PhD, Silvina A. Fratantoni PhD Instituto de Biología Celular y Neurociencias Profesor Eduardo de Robertis, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, ArgentinaSearch for more papers by this authorGisela Weisz MSc, Gisela Weisz MSc Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, ArgentinaSearch for more papers by this authorAna M. Pardal MD, Ana M. Pardal MD Hospital Británico, Buenos Aires, ArgentinaSearch for more papers by this authorRicardo C. Reisin MD, Ricardo C. Reisin MD Hospital Británico, Buenos Aires, ArgentinaSearch for more papers by this authorOsvaldo D. Uchitel MD, PhD, Corresponding Author Osvaldo D. Uchitel MD, PhD [email protected] Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, ArgentinaInstituto de Fisiología y Biología Molecular, Facultad de Ciencias Exactas, Pab. II, 2 piso, Capital Federal 1428, ArgentinaSearch for more papers by this author First published: 14 March 2000 https://doi.org/10.1002/(SICI)1097-4598(200004)23:4 3.0.CO;2-SCitations: 24AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract In order to search for early changes induced by the application of human immunoglobulin G (IgG) on motor nerve terminals, IgG from patients with amyotrophic lateral sclerosis (ALS) and control subjects was injected subcutaneously into the levator auris muscle of mice. A week or a month after the last injection, endplate potentials were recorded. No changes in quantal content of transmitter release were observed. In control and ALS IgG-treated muscles, neurotransmitter release remained sensitive to P/Q-type and insensitive to N-type voltage-sensitive calcium channel (VSCC) blockers as in untreated muscles. In contrast, IgG from 5 of 8 different ALS patients induced a significant reduction in quantal content of the evoked response after incubation with nitrendipine, indicating that a novel sensitivity to this calcium channel blocker appears in these motor nerve terminals. These results indicate that ALS IgG induces plastic changes at nerve terminals. The expression of transmitter release coupled to L-type VSCC indicate that ALS IgGs are capable of inducing plastic changes at the nerve terminals that may participate in the process leading to neuronal death. © 2000 John Wiley & Sons, Inc. Muscle Nerve 23: 543–550, 2000. REFERENCES 1Agustine GJ, Charlton MP, Smith SJ. Calcium action in synaptic transmitter release. Annu Rev Neurosci 1987; 10: 633–693. 2Appel SH, Engelhardt JI, Garcia J, Stefani E. Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. Proc Natl Acad Sci USA 1991; 88: 647–651. 3Atchinson WD. Dihydropyridine-sensitive and -insensitive components of acetylcholine release from rat motor nerve terminals. J Pharmacol Exp Ther 1989; 251: 672–678. 4Brady S. Motor-neuron diseases. Interfering with the runners. Nature 1995; 375: 12–13. 5Brown RH Jr. Superoxide dismutase and familial amyotrophic lateral sclerosis: new insights into mechanisms and treatments. Ann Neurol 1996; 39: 145–146. 6Deisseroth K, Heist EK, Tsien RW. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 1998; 392: 198–202. 7Drachman DB, Fishman PS, Rothstein JD, Motomura M, Lang B, Vincent A, Mellits ED. Amyotrophic lateral sclerosis: an autoimmune disease? Adv Neurol 1995; 68: 59–66. 8Fukunaga H, Engel AG, Lang B, Newsom-Davis J, Vincent A. Passive transfer of Lambert–Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc Natl Acad Sci USA 1983; 80: 7636–7640. 9Hubbard JI, Llinás R, Quastel DMJ. Electrophysiological analysis of synaptic transmission. London: Arnold; 1969. 10Katz E, Ferro P, Weisz G, Uchitel OD. Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction. J Physiol (Lond) 1996; 497: 687–697. 11Katz E, Protti DA, Ferro PA, Rosato Siri MD, Uchitel OD. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction. Br J Pharmacol 1997; 121: 1531–1540. 12Kimura F, Smith RG, Delbono O, Nyormoi O, Schneider T, Nastainczyk W, Hofmann F, Stefani E, Appel SH. Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel α1 subunit. Ann Neurol 1994; 35: 164–171. 13Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 1994; 13: 975–988. 14Lennon VA, Kryzer TJ, Griesmann GE, O'Suilleabhain PE, Windebank AJ, Woppmann A, Miljanich GP, Lambert EH. Calcium channel antibodies in the Lambert Eaton myasthenic syndrome and other paraneoplastic syndromes. N Engl J Med 1995; 332: 1467–1474. 15Martin AR. Quantal nature of synaptic transmission. Physiol Rev 1966; 46: 51–66. 16Maselli RA, Wollman RL, Leung C, Distad B, Palombi S, Richman DP, Salazar-Grueso EF, Roos RP. Neuromuscular transmission in amyotrophic lateral sclerosis. Muscle Nerve 1993; 16: 1193–1203. 17McLachlan EM, Martin AR. Non-linear summation of end-plate potentials in the frog and mouse. J Physiol (Lond) 1981; 311: 307–324. 18Nyormoi O. Proteolytic activity in amyotrophic lateral sclerosis IgG preparations. Ann Neurol 1996; 40: 701–706. 19O'Shaughnessy TJ, Yan H, Kim J, Middlekauff EH, Lee KW, Phillips LH, Kim J, Kim YI. Amyotrophic lateral sclerosis: serum factors enhance spontaneous and evoked transmitter release at the neuromuscular junction. Muscle Nerve 1998; 21: 81–90. 20Penner R, Dreyer F. Two different presynaptic calcium currents in mouse motor nerve terminals. Pflügers Arch 1986; 406: 190–197. 21Protti DA, Reisin R, Mackinley TA, Uchitel OD. Calcium channel blockers and transmitter release at the normal human neuromuscular junction. Neurology 1996; 46: 1391–1396. 22Protti DA, Uchitel OD. Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin ω-Aga-IVA. Neuroreport 1993; 5: 333–336. 23Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. Antisense knockout of glutamate transporters reveals a predominant role for astroglial glutamate transport in excitotoxicity and clearance of extracellular glutamate. Neuron 1996; 16: 675–686. 24Santa Fé M, Uchitel OD. L- and P-type calcium channels mediate transmitter release in botulinum toxin treated neuromuscular junctions. Soc Neurosci Abstr 1997; 23: 470–472. 25Schwartz MS, Swash M. Neurophysiological changes in motor neuron disease. In: PN Leigh, M Swash, eds. Motor neuron disease: biology and management. New York: Springer; 1995. p 331–344. 26Shaw PJ. Excitotoxicity and motor neuron disease: a review of the evidence. J Neurol Sci 1994; 124: 6–13. 27Siddique T, Deng HX. Genetics of amyotrophic lateral sclerosis. Hum Mol Genet 1996; 5: 1465–1470. 28Siddique T, Figlewicz DA, Pericak-Vance MA, Haines JL, Rouleau G, Jeffers AJ, Sapp P, Hung WY, Bebout J, McKenna-Yasek D, et al. Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic locus heterogeneity. N Engl J Med 1991; 324: 1381–1384. 29Smith DO, Conklin MW, Jensen PJ, Atchison WD. Decreased calcium currents in motor nerve terminals of mice with Lambert–Eaton myasthenic syndrome. J Physiol (Lond) 1995; 15;487: 115–123. 30Smith RG, Siklos L, Alexianu ME, Engelhardt JI, Mosier DR, Colom L, Habib Mohamed A, Appel SH. Autoimmunity and ALS. Neurology 1996; 47(suppl): S40–S46. 31Uchitel OD, Appel SH, Crawford F, Szczupak L. Immunoglobulins from amyotrophic lateral sclerosis patients enhance spontaneous transmitter release from motor nerve terminals. Proc Natl Acad Sci USA 1988; 85: 7371–7374. 32Uchitel OD, Protti DA, Sánchez V, Cherksey BD, Sugimori M, Llinás R. P-type voltage-dependent calcium channel mediate presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci USA 1992; 89: 3330–3333. 33Uchitel OD, Scornik F, Protti DA, Fumberg CG, Alvarez V, Appel SH. Long-term neuromuscular dysfunction produced by passive transfer of amyotrophic lateral sclerosis immunoglobulins. Neurology 1992; 42: 2175–2180. 34Vincent A, Drachman DB. Amyotrophic lateral sclerosis and antibodies to voltage-gated calcium channels — new doubts. Ann Neurol 1996; 40: 691–693. 35Williams DB, Windebank AJ. Motor neuron disease (amyotrophic lateral sclerosis). Mayo Clinic Proc 1991; 66: 54–82. 36 World Federation of Neurology Research Group on Neuromuscular Diseases. El Escorial World Federation of Neurología criteria for the diagnosis of amyotrophic lateral sclerosis. J Neurol Sci 1994; 124(suppl): 96–107. 37Zar JH. Biostatistical analysis, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall 1996. Citing Literature Volume23, Issue4April 2000Pages 543-550 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX