Optimal estimation of reactivity ratios for acrylamide/acrylic acid copolymerization
2013; Wiley; Volume: 51; Issue: 22 Linguagem: Inglês
10.1002/pola.26906
ISSN1099-0518
AutoresMarzieh Riahinezhad, Niousha Kazemi, Neil T. McManus, Alexander Penlidis,
Tópico(s)Plant Surface Properties and Treatments
ResumoJournal of Polymer Science Part A: Polymer ChemistryVolume 51, Issue 22 p. 4819-4827 Article Optimal estimation of reactivity ratios for acrylamide/acrylic acid copolymerization Marzieh Riahinezhad, Marzieh Riahinezhad Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Search for more papers by this authorNiousha Kazemi, Niousha Kazemi Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Search for more papers by this authorNeil McManus, Neil McManus Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Search for more papers by this authorAlexander Penlidis, Corresponding Author Alexander Penlidis Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Correspondence to: A. Penlidis (Email: [email protected])Search for more papers by this author Marzieh Riahinezhad, Marzieh Riahinezhad Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Search for more papers by this authorNiousha Kazemi, Niousha Kazemi Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Search for more papers by this authorNeil McManus, Neil McManus Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Search for more papers by this authorAlexander Penlidis, Corresponding Author Alexander Penlidis Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1Correspondence to: A. Penlidis (Email: [email protected])Search for more papers by this author First published: 02 September 2013 https://doi.org/10.1002/pola.26906Citations: 24Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL ABSTRACT Reactivity ratios for the important acrylamide (AAm)/acrylic acid (AAc) copolymerization system exhibit considerable scatter in previously published literature, and therefore, there is a need for more definitive values for these reactivity ratios. An appropriate methodology, based on the error-in-variables-model (EVM) framework along with a direct numerical integration procedure, is applied in order to determine reliable reactivity ratios. The reliability of the results is confirmed with extensive and independent replication. Furthermore, via an EVM-based criterion for the design of experiments using mechanistic models, optimal feed compositions are calculated, and from these optimal reactivity ratios are estimated for the first time (rAAm = 1.33 and rAAc = 0.23) based on information from the full conversion range. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4819–4827 REFERENCES AND NOTES 1C. A. Finch, Royal Society of Chemistry (Great Britain); New York: Plenum Press, 1983; Vol. V, p 1981. 2J. M. Ebeling, K. L. Rishel, P. L. Sibrell, Aquacult. Eng. 2005, 33, 235– 249. 3V. A. Myagchenkov, V. F. Kurenkov, Polym. Plast. Technol. Eng. 1991, 30, 109– 135. 4J. M. Maerker, Soc. Pet. Eng. 2012, 15, 311– 322. 5K. S. Sorbie, Blackie, London; UK: 1991. 6D. A. Z. Wever, F. Picchioni, A. A. Broekhuis, Prog. Polym. Sci. 2011, 36, 1558– 1628. 7A. H. Abdel-Alim, A. E. Hamielec, J. Appl. Polym. Sci. 1973, 17, 3769– 3778. 8A. Zaitoun, P. Makakou, N. Blin, R. S. Al-Maamari, A. R. Al-Hashemi, M. Abdel-Goad, H. H. Al-Sharji, Soc. Pet. Eng. 2012, 17, 335– 339. 9W. R. Cabaness, T. Y. C. Lin, C. Párkányi, J. Polym. Sci. Part A: Polym. Chem. 1971, 9, 2155– 2170. 10A. Paril, A. Giz, H. Catalgil-Giz, J. Appl. Polym. Sci. 2013, 127, 3530– 3536. 11I. Rintoul, C. Wandrey, Macromol. 2005, 38, 8108– 8115. 12S. Ponratnam, S. L. Kapur, Makromol. Chem. 1977, 178, 1029– 1038. 13A. Paril, A. M. Alb, A. T. Giz, H. Çatalgil-Giz, J. Appl. Polym. Sci. 2007, 103, 968– 974. 14I. Rintoul, C. Wandrey, Polymer 2005, 46, 4525– 4532. 15S. M. Shawki, A. E. Hamielec, J. Appl. Polym. Sci. 1979, 23, 3155– 3166. 16N. D. Truong, J. C. Galin, J. François, Q. T. Pham, Polymer 1986, 27, 467– 475. 17J. Bourdais, Bull. Soc. Chim. France 1955, 485. 18A. Chapiro, J. Dulieu, Z. Mankowski, N. Schmitt, Eur. Polym. J. 1989, 25, 879– 884. 19R. Vinu, G. Madras, J. Phys. Chem. B 2008, 112, 8928– 8935. 20V. F. Kurenkov, T. A. Gubanova, A. V. Kurenkov, F. I. Lobanov, Russ. J. Appl. Chem. 2008, 81, 1414– 1418. 21K. Plochocka, T. J. Wojnarowski, Eur. Polym. J. 1971, 7, 797– 804. 22P. M. Reilly, H. A. Patino-Leal, Technometrics 1981, 23, 221– 231. 23M. Dube, R. A. Sanayei, A. Penlidis, K. F. O'Driscoll, P. M. Reilly, J. Polym. Sci. Part A: Polym. Chem. 1991, 29, 703– 708. 24A. L. Polic, T. A. Duever, A. Penlidis, J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 813– 822. 25V. E. Meyer, G. G. Lowry, J. Polym. Sci. Part A: Gen. Pap. 1965, 3, 2843– 2851. 26N. Kazemi, T. A. Duever, A. Penlidis, Macromol. React. Eng. 2011, 5, 385– 403. 27F. M. Wampler, Plant/Oper. Prog. 1988, 7, 183– 189. 28J. A. Zurimendi, S. J. Guerrero, V. Leon, Polym. 1984, 25, 1314– 1316. 29N. Kazemi, T. A. Duever, A. Penlidis, Comput. Chem. Eng. 2013, 48, 200– 208. 30S. E. Keeler, P. M. Reilly, Can. J. Chem. Eng. 1991, 69, 27– 34. 31N. Kazemi, T. A. Duever, A. Penlidis, Macromol. Theory Simul. 2013, DOI: 10.1002/mats.201200085. 32P. W. Tidwell, G. A. Mortimer, J. Polym. Sci. Part A: Gen. Pap. 1965, 3, 369– 387. Citing Literature Volume51, Issue2215 November 2013Pages 4819-4827 ReferencesRelatedInformation
Referência(s)