Pseudo differential operators and the uniqueness of the cauchy problem
1969; Wiley; Volume: 22; Issue: 1 Linguagem: Inglês
10.1002/cpa.3160220105
ISSN1097-0312
Autores Tópico(s)Differential Equations and Boundary Problems
ResumoCommunications on Pure and Applied MathematicsVolume 22, Issue 1 p. 73-129 Article Pseudo differential operators and the uniqueness of the cauchy problem Hitoshi Kumano-go, Hitoshi Kumano-go Osaka UniversitySearch for more papers by this author Hitoshi Kumano-go, Hitoshi Kumano-go Osaka UniversitySearch for more papers by this author First published: January 1969 https://doi.org/10.1002/cpa.3160220105Citations: 13AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography 1 Claderón, A. P., Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., Vol. 80, 1958, pp. 16–36. 2 Friedrichs, K. O., Pseudo-Differential Operators, Lecture notes, Courant Inst. Math. Sci., New York Univ., 1968. 3 Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. 4 Hörmander, L., Pseudo-differential operators, Comm. Pure Appl. Math., Vol. 18, 1965, pp. 501–517. 5 Kohn, J. M., and Nirenberg, L., An algebra of pseudo-differential operators, Comm. Pure Appl. Math., Vol. 18, 1965, pp. 269–305. 6 Kumano-go, H., On the uniqueness for the solution of the Cauchy problem, Osaka Math. J., Vol. 15, 1963, pp. 151–172. 7 Kumano-go, H., On the uniqueness of solutions of the Cauchy problem for hypoelliptic partial differential operators, Proc. Japan Acad., Vol. 39, 1963, pp. 342–347. 8 Kumano-go H., On a definition of singular integral operators, I–II, Proc. Japan Acad., Vol. 40, 1964, pp. 368–378. 9 Lax, P. D., and Nirenberg, L., On stability for difference schemes; a sharp form of Gårding's inequality, Comm. Pure Appl. Math., Vol. 19, 1966, pp. 473–492. 10 Mizohata, S., Unicité du prolongement des solutions pour quelques opérateurs differentiels paraboliques, Mem. Coll. Sci. Univ. Kyoto, Ser. A, Vol. 31, 1958, pp. 219–239. 11 Mizohata, S., Le problème de Cauchy pour le passé pour quelques équations paraboliques, Proc. Japan Acad., Vol. 34, 1958, pp. 693–696. 12 Ohya, Y., Sur l'unicité du prolongement des solutions pour quelques équations differentielles paraboliques, Proc. Japan Acad., Vol. 37, 1961, pp. 358–362. 13 Pederson, R. N., Uniqueness in Cauchy's problem for elliptic equations with double characteristics, Arkiv Math., Vol. 6, 1967, pp. 535–549. 14 Yamaguti, M., and Nogi, T., An algebra of pseudo difference schemes and its applications, RIMS, Kyoto Univ., Ser. A., Vol. 3, 1967, pp. 151–166. 15 Yoshida, K., Functional Analysis, Springer-Verlag, Berlin, 1966. Citing Literature Volume22, Issue1January 1969Pages 73-129 ReferencesRelatedInformation
Referência(s)