Microstructure and superconducting properties of niobium and tantalum films sputtered onto copper substrates

1977; Wiley; Volume: 42; Issue: 2 Linguagem: Inglês

10.1002/pssa.2210420223

ISSN

1521-396X

Autores

M. J. Witcomb,

Tópico(s)

Particle accelerators and beam dynamics

Resumo

physica status solidi (a)Volume 42, Issue 2 p. 595-607 Original Paper Microstructure and superconducting properties of niobium and tantalum films sputtered onto copper substrates M. J. Witcomb, M. J. Witcomb Electron Microscope Unit, University of the Witwatersrand, JohannesburgSearch for more papers by this author M. J. Witcomb, M. J. Witcomb Electron Microscope Unit, University of the Witwatersrand, JohannesburgSearch for more papers by this author First published: 16 August 1977 https://doi.org/10.1002/pssa.2210420223Citations: 8AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten Niobium and tantalum films argon-sputtered onto deoxidized copper are found to yield superconducting parameters close to the bulk pure material only when the substrate is in-situ heated to about 1300 K for 0.5 h prior to film deposition. Flux penetration is then found to be fairly homogeneous and relatively unaffected for films 5 to 10 μm thick by surface topography generated by copper evaporation. The results of studies by both transmission and scanning electron microscopy of film structure and adhesion to substrate are reported. Abstractde Des films de niobium et de tantalum envoyés en postillons en atmosphère d'argon sur du cuivre desoxydisé ont montré exhibé des parametrès de superconductivité proches de ceux du materiel pur en vrac à condition que le substrat ait été chauffé in situ jusqu'à environ 1300 K pour une periode de 0,5 h avant le déposition du film. Il a été etable que la pénétration du flux est à peu près homogène et que, dans le cas des films épais de 5 à 10 μm la topographie de la surface, provenant de l'evaporation du cuivre, restait relativement inchangée. Les résultats des études faites par la microsocpic électronique, et par le scanning et par la transmission sur la structure du film et l'adhésion de ce dernier au substrat sont exposés. References 1 R. W. Meyerhoff and W. T. Beall, Jr., J. appl. Phys. 42, 147 (1971). 10.1063/1.1659549 CASWeb of Science®Google Scholar 2 C. Graeme-Barber, B. J. Maddock, R. A. Popley, and P. N. Smedley, Cryogenics 12, 317 (1972). 10.1016/0011-2275(72)90055-0 CASWeb of Science®Google Scholar 3 P. Penczynski, H. Hentzelt, and G. Eger, Cryogenics 14, 503 (1974). 10.1016/0011-2275(74)90128-3 CASWeb of Science®Google Scholar 4 J. A. Baylis, K. G. Lewis, J. C. Male, and J. A. Noé, Cryogenics 14, 553 (1974). 10.1016/0011-2275(74)90003-4 Web of Science®Google Scholar 5 J. Sutton and C. E. R. L. Leatherhead, Rep. RD/L/N40/70 (1970). Google Scholar 6 S. Foner, Rev. sci. Instrum. 40, 369 (1963). 10.1088/0950-7671/40/7/414 Web of Science®Google Scholar 7 R. M. Bozorth, Ferromagnetism, Van Nostrand Co., New York 1951 (p. 849). Google Scholar 8 L. Y. L. Shen, N. M. Senozan, and N. E. Phillips, Phys. Rev. Letters 14, 1025 (1965). 10.1103/PhysRevLett.14.1025 CASWeb of Science®Google Scholar 9 B. W. Roberts, Progress in Cryogenics, Vol. IV, Ed. K. Mendelssohn, Heywood and Co. Ltd., London 1964 (p. 159). Nat. Bur. Standards Tech. Note No. 482 May 1969, US Government Printing Office, Washington, (D.C.). Google Scholar 10 M. J. Witcomb, Proc. Electron Microsc. Soc. South. Afr. 6, 99 (1976). Google Scholar 11 H. F. Winters and E. Kay, J. appl. Phys. 38, 3928 (1967). 10.1063/1.1709043 CASWeb of Science®Google Scholar 12 P. H. Schmidt, R. N. Castellano, H. Barz, A. S. Cooper, and E. G. Spencer, J. appl. Phys. 44, 1833 (1973). 10.1063/1.1662459 CASWeb of Science®Google Scholar 13 G. Heim and E. Kay, J. appl. Phys. 46, 4006 (1975). 10.1063/1.322154 CASWeb of Science®Google Scholar 14 G. Von Minnigerode, Z. Phys. 154, 442 (1959). 10.1007/BF01328964 CASGoogle Scholar 15 T. McConville and B. Serin, Phys. Rev. 140, A1169 (1965). 10.1103/PhysRev.140.A1169 Google Scholar 16 D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys. Rev. 149, 231 (1966). 10.1103/PhysRev.149.231 CASWeb of Science®Google Scholar 17 T. B. Doyle, Ph.D. Thesis, Univ. of the Witwatersrand, Johannesburg 1975. Google Scholar 18 R. A. French, Cryogenics 8, 301 (1968). 10.1016/S0011-2275(68)80007-4 CASWeb of Science®Google Scholar 19 G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in: Superconductivity, Vol. 2, Ed. R. D. Parks, M. Dekker, Inc., New York 1969 (p. 787). Google Scholar 20 T. F. Stromberg and C. A. Swenson, Phys. Rev. Letters 9, 370 (1962). 10.1103/PhysRevLett.9.370 CASWeb of Science®Google Scholar 21 W. De Sorbo, Phys. Rev. 132, 107 (1963). 10.1103/PhysRev.132.107 CASWeb of Science®Google Scholar 22 A. V. Narlikar and D. Dew-Hughes, J. Mater. Sci. 1, 317 (1966). 10.1007/BF00549930 CASWeb of Science®Google Scholar 23 E. Klokholm, J. Vacuum. Sci. Technol. 8, 148 (1971). 10.1116/1.1316265 Web of Science®Google Scholar 24 M. J. Witcomb, Proc. Electron Microsc. Soc. South. Afr. 2, 75 (1972). Google Scholar 25 P. H. Melville, J. Phys. C 4, 2833 (1971). 10.1088/0022-3719/4/17/015 Web of Science®Google Scholar 26 A. D. G. Stewart and M. W. Thompson, J. Mater. Sci. 4, 56 (1969). 10.1007/BF00555048 Web of Science®Google Scholar 27 M. J. Witcomb, J. Mater. Sci. 9, 551 (1974). 10.1007/BF02387528 CASWeb of Science®Google Scholar 28 C. P. Bean and J. D. Livingston, Phys. Rev. 12, 14 (1964). Web of Science®Google Scholar 29 W. I. Dunn and P. Hlawiczka, J. Phys. D 1, 1469 (1968). 10.1088/0022-3727/1/11/311 Web of Science®Google Scholar 30 P. H. Melville, Adv. Phys. 21, 647 (1972). 10.1080/00018737200101328 CASWeb of Science®Google Scholar 31 P. H. Melville, J. Phys. C 5, 147 (1972). 10.1088/0022-3719/5/2/006 CASWeb of Science®Google Scholar 32 P. S. Swartz and H. R. Hart, Jr., Phys. Rev. 137, A818 (1965). 10.1103/PhysRev.137.A818 Web of Science®Google Scholar 33 A. D. Das Gupta and E. J. Kramer, U. S. At. Energy Comm. Rep. NYO-4060-8 (1971). Google Scholar 34 J. E. Evetts, D. Dew-Hughes, and A. M. Campbell, Phys. Letters (Netherlands) 16, 113 (1965). 10.1016/0031-9163(65)90143-5 CASWeb of Science®Google Scholar 35 M. J. Witcomb, M.Sc. Thesis, Univ. Lancaster (U. K.) 1967. Google Scholar 36 E. C. Rogers, B. E. Redmonds, and G. D. Chan, Cryogenics 9, 431 (1969). CASWeb of Science®Google Scholar 37 E. C. Rogers, R. J. Slaughter, and D. A. Swift, Proc. IEEE 118, 1493 (1971). CASWeb of Science®Google Scholar 38 G. Bogner, Cryogenics 16, 259 (1976). 10.1016/0011-2275(76)90316-7 CASWeb of Science®Google Scholar Citing Literature Volume42, Issue216 August 1977Pages 595-607 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX