Organic Spin Ladders from Tetrathiafulvalene (TTF) Derivatives
2005; Wiley; Volume: 15; Issue: 6 Linguagem: Inglês
10.1002/adfm.200400407
ISSN1616-3028
AutoresXavi Ribas, Marta Mas‐Torrent, Aarón Pérez‐Benítez, J.C. Dias, H. Alves, Elsa B. Lopes, R.T. Henriques, Elı́es Molins, Isabel C. Santos, Klaus Wurst, P. Foury-Leylekian, Manuel Almeida, Jaume Veciana, Concepció Rovira,
Tópico(s)Advanced NMR Techniques and Applications
ResumoAdvanced Functional MaterialsVolume 15, Issue 6 p. 1023-1035 Full Paper Organic Spin Ladders from Tetrathiafulvalene (TTF) Derivatives† X. Ribas, X. Ribas Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorM. Mas-Torrent, M. Mas-Torrent Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorA. Pérez-Benítez, A. Pérez-Benítez Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorJ. C. Dias, J. C. Dias Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorH. Alves, H. Alves Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorE. B. Lopes, E. B. Lopes Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorR. T. Henriques, R. T. Henriques Instituto de Telecommunicações, Polo de Lisboa, Instituto Superior Técnico, P-1049-001 Lisboa, PortugalSearch for more papers by this authorE. Molins, E. Molins Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorI. C. Santos, I. C. Santos Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorK. Wurst, K. Wurst Institut für Allgemeine Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, AustriaSearch for more papers by this authorP. Foury-Leylekian, P. Foury-Leylekian Laboratoire de Physique des Solides, Bâtiment 510, Univ. Paris-Sud, F-91405 Orsay, FranceSearch for more papers by this authorM. Almeida, M. Almeida [email protected] Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorJ. Veciana, J. Veciana Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorC. Rovira, C. Rovira [email protected] Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this author X. Ribas, X. Ribas Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorM. Mas-Torrent, M. Mas-Torrent Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorA. Pérez-Benítez, A. Pérez-Benítez Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorJ. C. Dias, J. C. Dias Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorH. Alves, H. Alves Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorE. B. Lopes, E. B. Lopes Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorR. T. Henriques, R. T. Henriques Instituto de Telecommunicações, Polo de Lisboa, Instituto Superior Técnico, P-1049-001 Lisboa, PortugalSearch for more papers by this authorE. Molins, E. Molins Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorI. C. Santos, I. C. Santos Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorK. Wurst, K. Wurst Institut für Allgemeine Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, AustriaSearch for more papers by this authorP. Foury-Leylekian, P. Foury-Leylekian Laboratoire de Physique des Solides, Bâtiment 510, Univ. Paris-Sud, F-91405 Orsay, FranceSearch for more papers by this authorM. Almeida, M. Almeida [email protected] Departamento de Química, Instituto Tecnológico e Nuclear/Centro de Física da Matéria Condensada da Universidade de Lisboa, P-2686-953 Sacavém, PortugalSearch for more papers by this authorJ. Veciana, J. Veciana Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this authorC. Rovira, C. Rovira [email protected] Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Bellaterra, SpainSearch for more papers by this author First published: 27 May 2005 https://doi.org/10.1002/adfm.200400407Citations: 32 † This work was supported in Spain by DGI project BQU2003-00760, and by DGR Catalonia, project 2001SGR00362, and in Portugal by FCT under contract POCTI/35342/QUI/2000. The collaboration between authors in Barcelona and Sacavém was supported by the ICCT-CSIC bilateral agreement, and additional support was provided through COST D14. Supporting Information is available from the authors or on Wiley InterScience (www.wileyinterscience.com). X-ray crystallographic files for ETT-TTF (3), (ETT-TTF)2[Au(mnt)2] (4), (DT-TTF)2[Au(i-mnt)2] (5), (DT-TTF)2[Au2- (i-mnt)2]2 (7), (DT-TTF)2[Cu(mnt)2] (8), and (DT-TTF)[Cu(mnt)2] (9) (CIF). ORTEP plots for compounds 4, 5, 7, 8, and 9. Crystal packing data for compounds 5 and 8. EPR intensity versus T plot for compounds 4 and 9. Picture of diffuse X-ray measurement at 200 K for 8. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Starting from the first organic spin ladder reported, a dithiophene-tetrathiafulvalene salt ((DT-TTF)2[Au(mnt)2]) (mnt = maleonitriledithiolate), two different approaches to enlarge the family of organic spin-ladder systems are described. The first approach consists of a molecular variation of the donor; to that purpose, the new TTF derivative ethylenethiothiophene-tetrathiafulvalene (ETT-TTF, 3), is synthesized and structurally characterized. From this donor a new ladder-like structure compound, (ETT-TTF)2[Au(mnt)2] (4), isostructural with (DT-TTF)2[Au(mnt)2], is obtained. However, the magnetic properties of 4 do not follow the known spin-ladder behavior owing to orientational disorder exhibited by the ETT-TTF molecules in the crystal structure. In the second approach, the acceptor complex is changed, either in the nature of the ligand or in the metal. With the [Au(i-mnt)2]– salt (i-mnt = iso-maleonitriledithiolate), the new ladder-like compound (DT-TTF)2[Au(i-mnt)2] (5), isostructural with 4, is obtained, but only as a minority product. Two other compounds with a different anion generated in situ, bearing a Au(I) dimeric core, were also isolated; (DT-TTF)9[Au2(i-mnt)2]2 (6) as the most abundant phase and (DT-TTF)2[Au2(i-mnt)2] (7) as another minority phase. Salt 7 is characterized by X-ray crystallography as a chiral compound, due to the torsion of the ligands around the central Au–Au bond. The magnetic properties of (DT-TTF)2[Au(i-mnt)2] (5) indicate that it follows a spin-ladder behavior and the electron paramagnetic resonance (EPR) data is fitted to the Troyer and Barnes and Riera equations with the parameters Δ/kB = 71 K, J∥/kB = 86 K, and J⟂/kB = 142 K, indicating a J⟂/J∥ ratio of 1.65. The change of the gold complex [Au(mnt)2] for its copper analogue, [Cu(mnt)2] also leads to a ladder-like structure, (DT-TTF)2[Cu(mnt)2] (8), which is isostructural with the gold analogue and with salts 4 and 5. The fully ionic salt (DT-TTF)[Cu(mnt)2] (9) is also obtained. The magnetic properties demonstrated that compound 8 is the third organic spin-ladder system of this family, and the values found by a fitting to the ladder equations were Δ/kB = 123 K, J∥/kB = 121 K, and J⟂/kB = 218 K, corresponding to a J⟂/J∥ ratio of 1.75, similar to that of 5 and close to that of an ideal spin ladder. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2126/2005/fp0407_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. REFERENCES 1a E. Dagotto, T. M. Rice, Science 1996, 271, 618. 1b D. J. Scalapino, Nature 1995, 377, 12. 1c Z. Hiroi, M. Takano, Nature 1995, 337, 41. 1d M. Azuma, Z. Hiroi, M. Tanako, K. Ishida, I. Kitaoka, Phys. Rev. Lett. 1994, 73, 3463. 2a D. C. Johnston, J. W. Johnson, D. P. Goshom, A. P. Jacobson, Phys. Rev. B 1987, 35, 219. 2b T. Barnes, J. Riera, Phys. Rev. B 1994, 50, 6817. 2c A. W. Garret, S. E. Nagler, D. A. Tennant, B. C. Sales, T. Barnes, Phys. Rev. Lett. 1997, 79, 74. 3a T. Matsumoto, Y. Miyazaki, A. S. Albrecht, C. P. Landee, M. M. Turnbull, M. Sorai, J. Phys. Chem. B 2000, 104, 9993. 3b F. M. Woodward, A. S. Albrecht, C. M. Wynn, C. P. Landee, M. M. Turnbull, Phys. Rev. B. 2002, 65, 144 412. 3c B. C. Watson, V. N. Kotov, M. W. Meisel, D. W. Hall, G. E. Granoth, W. T. Montfrooij, S. E. Nagnler, D. A. Jensen, R. Backov, M. A. Petruska, G. E. Fanucci, D. R. Talham, Phys. Rev. Lett. 2001, 86, 5168. 3d G. Chaboussant, M.-H. Julien, Y. Fagot-Revurat, L. P. Lévy, C. Berthier, M. Horvatié, O. Piovesana, Phys. Rev. Lett. 1997, 79, 925. 4a C. Rovira, J. Veciana, E. Ribera, J. Tarres, E. Canadell, R. Rousseau, M. Mas, E. Molins, M. Almeida, R. T. Henriques, J. Morgado, J.-P. Schoeffel, J.-P. Pouget, Angew. Chem. Int. Ed. Engl. 1997, 36, 2324. 4b C. Rovira, Chem. Eur. J. 2000, 6, 1723. 4c T. Komatsu, N. Kojima, G. Saito, Solid State Commun. 1997, 103, 519. 4d T. Komatsu, N. Kojima, G. Saito, Synth. Met. 1999, 103, 1923. 4e M. Fourmigué, B. Domercq, I. V. Jourdain, P. Molinié, F. Guyon, J. Amaudrut, Chem. Eur. J. 1988, 4, 1714. 4f B. Domercq, C. Coulon, M. Fourmigué, Inorg. Chem. 2001, 40, 371. 4g H. Imai, T. Inabe, T. Otsuka, T. Okumo, K. Awaga, Phys. Rev. B. 1996, 54, R6338. 4h H. Imai, T. Otsuka, T. Naito, K. Awaga, T. Inabe, J. Am. Chem. Soc. 1999, 121, 8098. 4i S. Nishihara, T. Akutagawa, T. Hasegawa, T. Nakamura, Chem. Commun. 2002, 408. 5 C. Rovira, in Structure and Bonding (Ed: J. Veciana), Springer-Verlag, Berlin, Germany 2001, pp. 163–188. 6 C. Rovira, J. Veciana, N. Santaló, J. Tarrés, J. Cirujeda, E. Molins, J. Llorca, E. Espinosa, J. Org. Chem. 1994, 59, 3307. 7 R. Wesolowski, J. T. Haraldsen, J. L. Musfeldt, T. Barnes, M. Mas-Torrent, C. Rovira, R. T. Henriques, M. Almeida, Phys. Rev. B 2003, 68, 134 405. 8 A. Pérez-Benítez, J. Tarrés, E. Ribera, J. Veciana, C. Rovira, Synthesis 1999, 4, 577. 9 L.-Y. Chiang, P. Shu, D. Holt, D. O. Cowan, J. Org. Chem. 1984, 49, 1117. 10a C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN 1976. 10b L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565. 11 J. B. Torrance, B. W. Scout, F. B. Kaufman, P. E. Seiden, Phys. Rev. B 1979, 19, 730. 12 A. Terahara, H. Ohya-Nishigushi, N. Hirota, H. Awaji, T. Kawase, S. Yoneda, T. Sugimoto, Z. Yoshida, Bull. Chem. Soc. Jpn. 1984, 57, 1760. 13 C. Rovira, A. Pérez-Benítez, E. Molins, I. Mata, M. Almeida, H. Alves, J. Veciana, V. Gama, E. B. Lopes, R. T. Henriques, Synth. Met. 2003, 133–134, 523. 14 J. Tarrés, M. Mas, E. Molins, J. Veciana, C. Rovira, J. Morgado, R. T. Henriques, M. Almeida, J. Mater. Chem. 1995, 5, 1653. 15 C. Rovira, S. Le Moustarder, D. Belo, J. Veciana, M. Almeida, V. Gama, M. T. Duarte, Synth. Met. 2001, 120, 717. 16 E. B. Lopes, H. Alves, E. Ribera, M. Mas-Torrent, P. Auban-Senzier, E. Canadell, R. T. Henriques, M. Almeida, E. Molins, J. Veciana, C. Rovira, D. Jérome, Eur. Phys. J. B 2002, 29, 27. 17 M. Mas-Torrent, H. Alves, E. B. Lopes, M. Almeida, K. Wurst, J. Vidal-Gancedo, J. Veciana, C. Rovira, J. Solid State Chem. 2002, 168, 563. 18a J. C. Dias, J. Morgado, H. Alves, E. B. Lopes, I. C. Santos, M. T. Duarte, R. T. Henriques, M. Almeida, X. Ribas, C. Rovira, J. Veciana, Polyhedron 2003, 22, 2447. 18b E. B. Lopes, J. C. Dias, J. P. Seiça, I. C. Santos, J. Morgado, R. T. Henriques, M. Almeida, X. Ribas, K. Wurst, J. Veciana, C. Rovira, P. Foury-Leylekian, J. Phys. IV 2004, 114, 537. 19 X. Ribas, M. Mas-Torrent, C. Rovira, J. Veciana, J. C. Dias, H. Alves, E. B. Lopes, M. Almeida, K. Wurst, Polyhedron 2003, 22, 2415. 20 B. G. Werden, E. Billig, H. B. Gray, Inorg. Chem. 1966, 5, 78. 21 M. J. Matos, R. T. Henriques, L. Alcácer, in Lower-Dimensional Systems and Molecular Electronics (Eds: R. M. Metzger, P. Day, G. Papavassiliou), Plenum Press, New York 1989. 22 M. J. Matos, I. C. Santos, R. T. Henriques, M. T. Duarte, Synth. Met. 1991, 41–43, 2155. 23a Cyclic voltammetry experiments on (n-Bu4N)2[Au(i-mnt)2] complex indicates its decomposition at potentials above 0.5 V. It has been determined by addition of I2 at –78 °C that the decomposition products after oxidation yields the dimeric Au(I) species [AuI2(i-mnt)2]2–, due to the formation of green intermediates assigned to [AuII2(i-mnt)2-(I)2]2–. Further details on the redox chemistry of these gold species are found in: N. I. Khan, J. P. Fackler, Jr., C. King, J. C. Wang, S. Wang, Inorg. Chem. 1988, 27, 1672. 23b N. I. Khan, S. Wang, J. P. Fackler, Jr., Inorg. Chem. 1989, 28, 3579. 24 A. Maspero, I. Kani, A. A. Mohamed, M. A. Omary, R. J. Staples, J. P. Fackler, Jr., Inorg. Chem. 2003, 42, 5311. 25 E. Coronado, C. J. Gómez-Garcia, Chem. Rev. 1998, 98, 273. 26 M. Troyer, D. Tsunetsugu, D. Würtz, Phys. Rev. B 1994, 50, 13 315. 27 M. Troyer, E. Zhitomirsky, K. Ueda, Phys. Rev. B 1997, 55, 6117. 28a V. Gama, M. Almeida, R. T. Henriques, I. C. Santos, A. Domingos, S. Ravy, J. P. Pouget, J. Phys. Chem. 1991, 95, 4263. 28b V. Gama, R. T. Henriques, M. Almeida, J. P. Pouget, Synth. Met. 1993, 55–57, 1677. 28c V. Gama, R. T. Henriques, M. Almeida, L. Alcácer, J. Phys. Chem. 1994, 98, 997. 29 M. Almeida, R. T. Henriques, in Organic Conductive Molecules and Polymers (Ed.: H. S. Nalwa), John Wiley and Sons, Chichester, UK 1997, pp. 87–149. 30 J. D. Forrester, A. Zalkin, D. H. Templeton, Inorg. Chem. 1964, 3, 1500. 31 E. Ribera, C. Rovira, J. Veciana, J. Tarrés, E. Canadell, R. Rousseau, E. Molins, M. Mas, J.-P. Schoeffel, J.-P. Pouget, J. Morgado, R. T. Henriques, M. Almeida, Chem. Eur. J. 1999, 5, 2025. 32 J. C. Dias, E. B. Lopes, I. C. Santos, M. T. Duarte, R. T. Henriques, M. Almeida, X. Ribas, C. Rovira, J. Veciana, P. Foury-Leylekian, J.-P. Pouget, P. Auban-Senzier, D. Jérome, J. Phys. IV 2004, 114, 497. 33a A. Davison, N. Edelstein, R. H. Holm, A. H. Maki, Inorg. Chem. 1963, 2, 1227. 33b A. Davison, R. H. Holm, Inorg. Synth. 1967, 10, 8. 34 L. Persaud, C. Langford, Inorg. Chem. 1985, 24, 3562. 35 C. K. Fair, MolEN, An Interactive Intelligent System for Crystal Structure Analysis, Delft, The Netherlands 1990. 36 G. M. Sheldrick, Acta Crystallogr. A 1990, 46, 467. 37 SIR97—A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115–119. 38 G. M. Sheldrick, University of Göttingen: Göttingen, Germany 1997. SHELX97—Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany 1998. 39 M. Almeida, S. Oostra, L. Alcácer, Phys. Rev. B 1984, 30, 2839. 40 E. B. Lopes, INETI-Sacavém, internal report, Sacavem, Portugal 1991. 41 R. P. Huebner, Phys. Rev. A 1964, 135, 1281. 42 P. E. Schafer, F. Wudl, G. A. Thomas, J. P. Ferraris, D. O. Cowan, Solid State Commun. 1974, 14, 347. Citing Literature Volume15, Issue6June, 2005Pages 1023-1035 ReferencesRelatedInformation
Referência(s)