Small Molecule Inhibitors of Aggregation Indicate That Amyloid β Oligomerization and Fibrillization Pathways Are Independent and Distinct
2007; Elsevier BV; Volume: 282; Issue: 14 Linguagem: Inglês
10.1074/jbc.m608207200
ISSN1083-351X
AutoresMihaela Necula, Rakez Kayed, Saskia Milton, Charles Glabe,
Tópico(s)Parkinson's Disease Mechanisms and Treatments
ResumoAlzheimer disease is characterized by the abnormal aggregation of amyloid β peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is whether amyloid oligomers are an obligate intermediate on the pathway to fibril formation or represent an alternate assembly pathway that may or may not lead to fiber formation. To determine whether amyloid β oligomers are obligate intermediates in the fibrillization pathway, we characterized the mechanism of action of amyloid β aggregation inhibitors in terms of oligomer and fibril formation. Based on their effects, the small molecules segregated into three distinct classes: compounds that inhibit oligomerization but not fibrillization, compounds that inhibit fibrillization but not oligomerization, and compounds that inhibit both. Several compounds selectively inhibited oligomerization at substoichiometric concentrations relative to amyloid β monomer, with some active in the low nanomolar range. These results indicate that oligomers are not an obligate intermediate in the fibril formation pathway. In addition, these data suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms. Alzheimer disease is characterized by the abnormal aggregation of amyloid β peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is whether amyloid oligomers are an obligate intermediate on the pathway to fibril formation or represent an alternate assembly pathway that may or may not lead to fiber formation. To determine whether amyloid β oligomers are obligate intermediates in the fibrillization pathway, we characterized the mechanism of action of amyloid β aggregation inhibitors in terms of oligomer and fibril formation. Based on their effects, the small molecules segregated into three distinct classes: compounds that inhibit oligomerization but not fibrillization, compounds that inhibit fibrillization but not oligomerization, and compounds that inhibit both. Several compounds selectively inhibited oligomerization at substoichiometric concentrations relative to amyloid β monomer, with some active in the low nanomolar range. These results indicate that oligomers are not an obligate intermediate in the fibril formation pathway. In addition, these data suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms. Protein aggregation into amyloid fibrils is a pathological hallmark of many neurodegenerative diseases, including Alzheimer disease (AD). 2The abbreviations used are: AD, Alzheimer disease; Aβ, amyloid β protein; Aβ42, amyloid β protein containing 42 amino acids; BSB, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene; C17, trimethyl(tetradecyl)ammonium bromide; C16, hexadecyltrimethylammonium bromide; TBS-T, Tris-buffered saline containing 0.01% Tween 20; TEM, transmission electron microscopy; ThT, thioflavin T; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay; AR, anti-rabbit IgG; HFIP, hexafluoroisopropanol; ADDL, Aβ-derived diffusable ligand. AD is characterized, in part, by the aggregation of amyloid β protein (Aβ) into fibrillar amyloid plaques in select areas of the brain (1Selkoe D.J. Neuron. 1991; 6: 487-498Abstract Full Text PDF PubMed Scopus (2042) Google Scholar). Compelling evidence indicates that Aβ aggregation is critical for neurodegeneration, suggesting that preventing this process may be an effective therapeutic approach for the treatment of AD (2Hardy J. Selkoe D.J. Science. 2002; 297: 353-356Crossref PubMed Scopus (9917) Google Scholar, 3Glabe C.C. Subcell. Biochem. 2005; 38: 167-177Crossref PubMed Google Scholar, 4Bloom G.S. Ren K. Glabe C.G. Biochim. Biophys. Acta. 2005; 1739: 116-124Crossref PubMed Scopus (29) Google Scholar). A number of small molecules have been reported to inhibit Aβ fibrillogenesis. Since it was initially presumed that toxicity is associated with mature fibers (5Howlett D.R. Jennings K.H. Lee D.C. Clark M.S. Brown F. Wetzel R. Wood S.J. Camilleri P. Roberts G.W. Neurodegeneration. 1995; 4: 23-32Crossref PubMed Scopus (179) Google Scholar, 6Pike C.J. Walencewicz A.J. Glabe C.G. Cotman C.W. Brain Res. 1991; 563: 311-314Crossref PubMed Scopus (806) Google Scholar, 7Pike C.J. Burdick D. Walencewicz A.J. Glabe C.G. Cotman C.W. J. Neurosci. 1993; 13: 1676-1687Crossref PubMed Google Scholar, 8Seilheimer B. Bohrmann B. Bondolfi L. Muller F. Stuber D. Dobeli H. J. Struct. Biol. 1997; 119: 59-71Crossref PubMed Scopus (199) Google Scholar), the majority of inhibitor screens have been directed toward identifying modulators of Aβ fibrillization. These fibril inhibitor screens have resulted in the discovery of multiple inhibitor molecules (9Sabate R. Estelrich J. Langmuir. 2005; 21: 6944-6949Crossref PubMed Scopus (63) Google Scholar, 10Kuner P. Bohrmann B. Tjernberg L.O. Naslund J. Huber G. Celenk S. Gruninger-Leitch F. Richards J.G. Jakob-Roetne R. Kemp J.A. Nordstedt C. J. Biol. Chem. 2000; 275: 1673-1678Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 11Ono K. Hasegawa K. Naiki H. Yamada M. J. Neurosci. Res. 2004; 75: 742-750Crossref PubMed Scopus (780) Google Scholar, 12Cheng X. van Breemen R.B. Anal Chem. 2005; 77: 7012-7015Crossref PubMed Scopus (53) Google Scholar, 13De Felice F.G. Houzel J.C. Garcia-Abreu J. Louzada Jr., P.R. Afonso R.C. Meirelles M.N. Lent R. Neto V.M. Ferreira S.T. FASEB J. 2001; 15: 1297-1299Crossref PubMed Scopus (103) Google Scholar, 14Bohrmann B. Adrian M. Dubochet J. Kuner P. Muller F. Huber W. Nordstedt C. Dobeli H. J. Struct. Biol. 2000; 130: 232-246Crossref PubMed Scopus (53) Google Scholar, 15Howlett D.R. George A.R. Owen D.E. Ward R.V. Markwell R.E. Biochem. J. 1999; 343: 419-423Crossref PubMed Scopus (129) Google Scholar, 16Tomiyama T. Asano S. Suwa Y. Morita T. Kataoka K. Mori H. Endo N. Biochem. Biophys. Res. Commun. 1994; 204: 76-83Crossref PubMed Scopus (148) Google Scholar, 17Wood S.J. MacKenzie L. Maleeff B. Hurle M.R. Wetzel R. J. Biol. Chem. 1996; 271: 4086-4092Abstract Full Text PDF PubMed Scopus (155) Google Scholar, 18Pappolla M. Bozner P. Soto C. Shao H. Robakis N.K. Zagorski M. Frangione B. Ghiso J. J. Biol. Chem. 1998; 273: 7185-7188Abstract Full Text Full Text PDF PubMed Scopus (295) Google Scholar, 19Lashuel H.A. Hartley D.M. Balakhaneh D. Aggarwal A. Teichberg S. Callaway D.J. J. Biol. Chem. 2002; 277: 42881-42890Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar, 20Howlett D.R. Perry A.E. Godfrey F. Swatton J.E. Jennings K.H. Spitzfaden C. Wadsworth H. Wood S.J. Markwell R.E. Biochem. J. 1999; 340: 283-289Crossref PubMed Scopus (186) Google Scholar, 21Lorenzo A. Yankner B.A. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 12243-12247Crossref PubMed Scopus (1259) Google Scholar, 22Williams A.D. Sega M. Chen M. Kheterpal I. Geva M. Berthelier V. Kaleta D.T. Cook K.D. Wetzel R. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 7115-7120Crossref PubMed Scopus (116) Google Scholar, 23Ono K. Hasegawa K. Naiki H. Yamada M. Biochim. Biophys. Acta. 2004; 1690: 193-202Crossref PubMed Scopus (206) Google Scholar, 24De Felice F.G. Vieira M.N. Saraiva L.M. Figueroa-Villar J.D. Garcia-Abreu J. Liu R. Chang L. Klein W.L. Ferreira S.T. FASEB J. 2004; 18: 1366-1372Crossref PubMed Scopus (168) Google Scholar). Some compounds have also been shown to inhibit Aβ-mediated cellular toxicity, and this activity was correlated with modulation of fibrillization (13De Felice F.G. Houzel J.C. Garcia-Abreu J. Louzada Jr., P.R. Afonso R.C. Meirelles M.N. Lent R. Neto V.M. Ferreira S.T. FASEB J. 2001; 15: 1297-1299Crossref PubMed Scopus (103) Google Scholar, 15Howlett D.R. George A.R. Owen D.E. Ward R.V. Markwell R.E. Biochem. J. 1999; 343: 419-423Crossref PubMed Scopus (129) Google Scholar, 16Tomiyama T. Asano S. Suwa Y. Morita T. Kataoka K. Mori H. Endo N. Biochem. Biophys. Res. Commun. 1994; 204: 76-83Crossref PubMed Scopus (148) Google Scholar, 21Lorenzo A. Yankner B.A. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 12243-12247Crossref PubMed Scopus (1259) Google Scholar, 25Pollack S.J. Sadler II, Hawtin S.R. Tailor V.J. Shearman M.S. Neurosci. Lett. 1995; 197: 211-214Crossref PubMed Scopus (83) Google Scholar). However, Aβ aggregation is a complicated process and appears to involve more than a simple conversion of soluble monomer to fiber. More recent evidence has pointed to the role of soluble amyloid oligomers or prefibrillar aggregation intermediates as the primary toxic species in degenerative amyloid diseases (2Hardy J. Selkoe D.J. Science. 2002; 297: 353-356Crossref PubMed Scopus (9917) Google Scholar, 3Glabe C.C. Subcell. Biochem. 2005; 38: 167-177Crossref PubMed Google Scholar). Electron microscopy and atomic force microscopy have identified spherical particles of ∼3–10 nm that appear at early times of incubation and disappear as mature fibrils appear (26Harper J.D. Wong S.S. Lieber C.M. Lansbury P.T. Chem. Biol. 1997; 4: 119-125Abstract Full Text PDF PubMed Google Scholar). These spherical oligomers appear to represent intermediates in the pathway of fibril formation, because they are transiently observed at intermediate times of incubation during fibril formation. Although oligomers are kinetic intermediates, it is not yet clear whether they are obligate intermediates in the pathway for fibril formation, whether they coalesce directly to form fibrils (26Harper J.D. Wong S.S. Lieber C.M. Lansbury P.T. Chem. Biol. 1997; 4: 119-125Abstract Full Text PDF PubMed Google Scholar, 28Harper J.D. Lieber C.M. Lansbury Jr., P.T. Chem. Biol. 1997; 4: 951-959Abstract Full Text PDF PubMed Google Scholar, 29Walsh D.M. Lomakin A. Benedek G.B. Condron M.M. Teplow D.B. J. Biol. Chem. 1997; 272: 22364-22372Abstract Full Text Full Text PDF PubMed Scopus (907) Google Scholar, 30Blackley H.K. Sanders G.H. Davies M.C. Roberts C.J. Tendler S.J. Wilkinson M.J. J. Mol. Biol. 2000; 298: 833-840Crossref PubMed Scopus (154) Google Scholar, 31Nybo M. Svehag S.E. Holm Nielsen E. Scand. J. Immunol. 1999; 49: 219-223Crossref PubMed Scopus (52) Google Scholar, 32Walsh D.M. Hartley D.M. Kusumoto Y. Fezoui Y. Condron M.M. Lomakin A. Benedek G.B. Selkoe D.J. Teplow D.B. J. Biol. Chem. 1999; 274: 25945-25952Abstract Full Text Full Text PDF PubMed Scopus (946) Google Scholar, 33Kirkitadze M.D. Condron M.M. Teplow D.B. J. Mol. Biol. 2001; 312: 1103-1119Crossref PubMed Scopus (572) Google Scholar), or whether oligomers populate a different aggregation pathway that is distinct from the classic nucleation-dependent fibril assembly pathway (34Naiki H. Nakakuki K. Lab. Invest. 1996; 74: 374-383PubMed Google Scholar, 35Lomakin A. Chung D.S. Benedek G.B. Kirschner D.A. Teplow D.B. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 1125-1129Crossref PubMed Scopus (708) Google Scholar, 36Harper J.D. Wong S.S. Lieber C.M. Lansbury Jr., P.T. Biochemistry. 1999; 38: 8972-8980Crossref PubMed Scopus (441) Google Scholar). This same controversy extends to the aggregation of many other amyloidogenic proteins, since many types of amyloids display the same type of kinetically unstable intermediate, the soluble oligomer. Insulin, immunoglobulin light chain, amylin, α-synuclein, transthyretin, prion protein, β2-microglobulin, β-lactoglobulin, phosphoglycerate kinase, and albebetin oligomers have been described as "off pathway" species (37Gosal W.S. Clark A.H. Ross-Murphy S.B. Biomacromolecules. 2004; 5: 2408-2419Crossref PubMed Scopus (153) Google Scholar, 38Gosal W.S. Morten I.J. Hewitt E.W. Smith D.A. Thomson N.H. Radford S.E. J. Mol. Biol. 2005; 351: 850-864Crossref PubMed Scopus (285) Google Scholar, 39Modler A.J. Gast K. Lutsch G. Damaschun G. J. Mol. Biol. 2003; 325: 135-148Crossref PubMed Scopus (148) Google Scholar, 40Hurshman A.R. White J.T. Powers E.T. Kelly J.W. Biochemistry. 2004; 43: 7365-7381Crossref PubMed Scopus (263) Google Scholar, 41Baskakov I.V. Legname G. Baldwin M.A. Prusiner S.B. Cohen F.E. J. Biol. Chem. 2002; 277: 21140-21148Abstract Full Text Full Text PDF PubMed Scopus (379) Google Scholar, 42Kaylor J. Bodner N. Edridge S. Yamin G. Hong D.P. Fink A.L. J. Mol. Biol. 2005; 353: 357-372Crossref PubMed Scopus (134) Google Scholar, 43Souillac P.O. Uversky V.N. Millett I.S. Khurana R. Doniach S. Fink A.L. J. Biol. Chem. 2002; 277: 12666-12679Abstract Full Text Full Text PDF PubMed Scopus (104) Google Scholar, 44Souillac P.O. Uversky V.N. Fink A.L. Biochemistry. 2003; 42: 8094-8104Crossref PubMed Scopus (74) Google Scholar, 45Padrick S.B. Miranker A.D. Biochemistry. 2002; 41: 4694-4703Crossref PubMed Scopus (264) Google Scholar, 46Grudzielanek S. Smirnovas V. Winter R. J. Mol. Biol. 2006; 356: 497-509Crossref PubMed Scopus (91) Google Scholar, 47Morozova-Roche L.A. Zamotin V. Malisauskas M. Ohman A. Chertkova R. Lavrikova M.A. Kostanyan I.A. Dolgikh D.A. Kirpichnikov M.P. Biochemistry. 2004; 43: 9610-9619Crossref PubMed Scopus (41) Google Scholar). Oligomers of insulin, amylin, huntingtin, and albebetin have been reported to be "on pathway" intermediates or precursors of fibril formation (47Morozova-Roche L.A. Zamotin V. Malisauskas M. Ohman A. Chertkova R. Lavrikova M.A. Kostanyan I.A. Dolgikh D.A. Kirpichnikov M.P. Biochemistry. 2004; 43: 9610-9619Crossref PubMed Scopus (41) Google Scholar, 48Ahmad A. Uversky V.N. Hong D. Fink A.L. J. Biol. Chem. 2005; 280: 42669-42675Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar, 49Green J.D. Goldsbury C. Kistler J. Cooper G.J. Aebi U. J. Biol. Chem. 2004; 279: 12206-12212Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 50Poirier M.A. Li H. Macosko J. Cai S. Amzel M. Ross C.A. J. Biol. Chem. 2002; 277: 41032-41037Abstract Full Text Full Text PDF PubMed Scopus (301) Google Scholar). Therefore, the published data are equivocal as to whether oligomers are intermediates on the pathway leading to fiber formation or whether they represent "off pathway" aggregates that populate an alternative aggregation pathway (51Gorman P.M. Yip C.M. Fraser P.E. Chakrabartty A. J. Mol. Biol. 2003; 325: 743-757Crossref PubMed Scopus (86) Google Scholar). Soluble Aβ oligomers have been referred to by a variety of names, including amorphous aggregates, micelles, protofibrils, prefibrillar aggregates, and ADDLs (26Harper J.D. Wong S.S. Lieber C.M. Lansbury P.T. Chem. Biol. 1997; 4: 119-125Abstract Full Text PDF PubMed Google Scholar, 29Walsh D.M. Lomakin A. Benedek G.B. Condron M.M. Teplow D.B. J. Biol. Chem. 1997; 272: 22364-22372Abstract Full Text Full Text PDF PubMed Scopus (907) Google Scholar, 52Soreghan B. Kosmoski J. Glabe C. J. Biol. Chem. 1994; 269: 28551-28554Abstract Full Text PDF PubMed Google Scholar, 53Lomakin A. Teplow D.B. Kirschner D.A. Benedek G.B. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 7942-7947Crossref PubMed Scopus (462) Google Scholar, 55Lambert M.P. Barlow A.K. Chromy B.A. Edwards C. Freed R. Liosatos M. Morgan T.E. Rozovsky I. Trommer B. Viola K.L. Wals P. Zhang C. Finch C.E. Krafft G.A. Klein W.L. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 6448-6453Crossref PubMed Scopus (2923) Google Scholar, 56Bucciantini M. Giannoni E. Chiti F. Baroni F. Formigli L. Zurdo J. Taddei N. Ramponi G. Dobson C.M. Stefani M. Nature. 2002; 416: 507-511Crossref PubMed Scopus (2034) Google Scholar, 57Burdick D. Soreghan B. Kwon M. Kosmoski J. Knauer M. Henschen A. Yates J. Cotman C. Glabe C. J. Biol. Chem. 1992; 267: 546-554Abstract Full Text PDF PubMed Google Scholar). At longer aggregation times, curvilinear fibers form that have a beaded appearance. These structures have also been called "protofibrils," because they appear to be formed by the coalescence of the spherical subunits (26Harper J.D. Wong S.S. Lieber C.M. Lansbury P.T. Chem. Biol. 1997; 4: 119-125Abstract Full Text PDF PubMed Google Scholar). These prefibrillar soluble oligomers are specifically recognized by a polyclonal antibody, A11, 3Nomenclature is as follows. A11 is an anti-oligomer-specific antibody (58Kayed R. Head E. Thompson J.L. McIntire T.M. Milton S.C. Cotman C.W. Glabe C.G. Science. 2003; 300: 486-489Crossref PubMed Scopus (3228) Google Scholar). Inhibition of oligomerization refers to inhibition of formation of A11-immunoreactive oligomers. An inhibitor of oligomerization refers to a molecule that inhibits the formation of A11-immunoreactive oligomers. "Oligomerization conditions" refer to conditions that favor A11-reactive oligomer visualization. "Fibrillization conditions" refer to conditions that favor fiber formation in the absence of contamination with A11-positive oligomers. Fibrillization conditions and oligomerization conditions represent a nomenclature used for the sole purpose of describing conditions where Aβ42 forms oligomer-free fibers or fiber-free oligomers (at early time points), respectively. These conditions allow separate screening of effects of compounds on fiber or oligomer formation. This nomenclature is not meant to indicate that these are the best or the only conditions to prepare fibers and oligomers. that recognizes a generic backbone epitope that is common to the oligomeric state independent of the protein sequence (58Kayed R. Head E. Thompson J.L. McIntire T.M. Milton S.C. Cotman C.W. Glabe C.G. Science. 2003; 300: 486-489Crossref PubMed Scopus (3228) Google Scholar). A11 does not recognize Aβ monomer, Aβ dimer, trimer, or tetramer or Aβ fibrils (58Kayed R. Head E. Thompson J.L. McIntire T.M. Milton S.C. Cotman C.W. Glabe C.G. Science. 2003; 300: 486-489Crossref PubMed Scopus (3228) Google Scholar). A11 positive oligomers display the same intermediate kinetics as observed for soluble oligomers and protofibrils by electron microscopy and atomic force microscopy and A11 blocks the toxicity of Aβ oligomers, indicating that they represent the primary toxic species. Aβ*56 is a soluble oligomeric form of Aβ that is closely associated with pathogenesis in the Tg2576 mouse model of AD, and Aβ*56 is specifically recognized by A11 anti-oligomer antibody (59Lesne S. Koh M.T. Kotilinek L. Kayed R. Glabe C.G. Yang A. Gallagher M. Ashe K.H. Nature. 2006; 440: 352-357Crossref PubMed Scopus (2279) Google Scholar). Although ADDLs were originally described as low molecular weight trimeric or tetrameric species, more recent investigations indicate that native masses of ADDLs are the same as previously reported for other Aβ-soluble oligomers (60Hepler R.W. Grimm K.M. Nahas D.D. Breese R. Dodson E.C. Acton P. Keller P.M. Yeager M. Wang H. Shughrue P. Kinney G. Joyce J.G. Biochemistry. 2006; 45: 15157-15167Crossref PubMed Scopus (157) Google Scholar). A11 and anti-ADDL antibodies identify the same time course of soluble oligomer accumulation in the 3xTg-AD mouse (61Oddo S. Caccamo A. Tran L. Lambert M.P. Glabe C.G. Klein W.L. LaFerla F.M. J. Biol. Chem. 2006; 281: 1599-1604Abstract Full Text Full Text PDF PubMed Scopus (339) Google Scholar). Therefore, A11 antibody recognizes a significant and important class of oligomers associated with AD that are distinct from amyloid fibrils. Analysis of the mechanism of action of amyloid aggregation inhibitors holds the promise of clarifying the relationship between oligomers and fibrils, because if oligomers are obligate intermediates on the pathway to fibril formation, then all inhibitors that block oligomer formation would be expected to block fibril formation as well. Alternatively, if fibrils and oligomers represent distinct aggregation pathways, then it would be expected that some inhibitors would block oligomerization but not fibril formation. Here we utilize the anti-oligomer antibody, A11, as a primary read out for oligomer formation, and we analyze the mechanism of action of small molecules that have been reported to inhibit the aggregation of different amyloidogenic proteins or their toxicity. The results demonstrate that some inhibitors specifically target oligomers, whereas others specifically inhibit fibrillization. These data indicate that soluble oligomers are not an obligate intermediate for fibril formation and that oligomers and fibrils represent separate and distinct aggregation pathways. The results further indicate that screening for aggregation inhibitors using fibril-specific assays, like thioflavin T (ThT) fluorescence, will not necessarily identify inhibitors of oligomerization. Materials—Synthetic Aβ42 was prepared as previously described (57Burdick D. Soreghan B. Kwon M. Kosmoski J. Knauer M. Henschen A. Yates J. Cotman C. Glabe C. J. Biol. Chem. 1992; 267: 546-554Abstract Full Text PDF PubMed Google Scholar). 200-mesh formvar/carbon-coated nickel grids were obtained from Electron Microscopy Sciences (Ft. Washington, PA), and 4–20% Tris-HCl gels were from Bio-Rad. 96-well clear, flat bottom microplates were from Nalge Nunc International (Rochester, NY), and 3,3′,5,5′-tetramethylbenzidine was from KPL (Gaithersburg, MD). A11 anti-oligomer antibody is available from Invitrogen. Horseradish peroxidase-conjugated anti-rabbit IgG (AR) was purchased from Promega (Madison, WI), 6E10 and 4G8 antibodies were from Signet (Dedham, MA), and the ECL chemiluminescence kit was from Amersham Biosciences. 0.2-μm nitrocellulose membranes were form Schleicher & Schuell. Small molecule compounds and all other reagents were from Sigma or Calbiochem. The following small molecules or analogs of small molecules reported previously to bind amyloid or to modulate protein aggregation and/or toxicity or screened for such activities were tested here separately for their ability to inhibit Aβ42 oligomer and fiber formation: apigenin (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), azure C (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), basic blue 41 (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (BSB) (63Skovronsky D.M. Zhang B. Kung M.P. Kung H.F. Trojanowski J.Q. Lee V.M. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 7609-7614Crossref PubMed Scopus (197) Google Scholar), Chicago sky blue 6B (25Pollack S.J. Sadler II, Hawtin S.R. Tailor V.J. Shearman M.S. Neurosci. Lett. 1995; 197: 211-214Crossref PubMed Scopus (83) Google Scholar), Congo red (10Kuner P. Bohrmann B. Tjernberg L.O. Naslund J. Huber G. Celenk S. Gruninger-Leitch F. Richards J.G. Jakob-Roetne R. Kemp J.A. Nordstedt C. J. Biol. Chem. 2000; 275: 1673-1678Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 25Pollack S.J. Sadler II, Hawtin S.R. Tailor V.J. Shearman M.S. Neurosci. Lett. 1995; 197: 211-214Crossref PubMed Scopus (83) Google Scholar, 64Podlisny M.B. Walsh D.M. Amarante P. Ostaszewski B.L. Stimson E.R. Maggio J.E. Teplow D.B. Selkoe D.J. Biochemistry. 1998; 37: 3602-3611Crossref PubMed Scopus (181) Google Scholar, 65Heiser V. Scherzinger E. Boeddrich A. Nordhoff E. Lurz R. Schugardt N. Lehrach H. Wanker E.E. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 6739-6744Crossref PubMed Scopus (244) Google Scholar, 66Chirita C.N. Congdon E.E. Yin H. Kuret J. Biochemistry. 2005; 44: 5862-5872Crossref PubMed Scopus (134) Google Scholar), β-cyclodextrin (67Camilleri P. Haskins N.J. Howlett D.R. FEBS Lett. 1994; 341: 256-258Crossref PubMed Scopus (104) Google Scholar, 68Yu J. Bakhos L. Chang L. Holterman M.J. Klein W.L. Venton D.L. J. Mol. Neurosci. 2002; 19: 51-55Crossref PubMed Scopus (27) Google Scholar), curcumin (11Ono K. Hasegawa K. Naiki H. Yamada M. J. Neurosci. Res. 2004; 75: 742-750Crossref PubMed Scopus (780) Google Scholar, 69Yang F. Lim G.P. Begum A.N. Ubeda O.J. Simmons M.R. Ambegaokar S.S. Chen P.P. Kayed R. Glabe C.G. Frautschy S.A. Cole G.M. J. Biol. Chem. 2005; 280: 5892-5901Abstract Full Text Full Text PDF PubMed Scopus (1755) Google Scholar), daunomycin hydrochloride (15Howlett D.R. George A.R. Owen D.E. Ward R.V. Markwell R.E. Biochem. J. 1999; 343: 419-423Crossref PubMed Scopus (129) Google Scholar, 20Howlett D.R. Perry A.E. Godfrey F. Swatton J.E. Jennings K.H. Spitzfaden C. Wadsworth H. Wood S.J. Markwell R.E. Biochem. J. 1999; 340: 283-289Crossref PubMed Scopus (186) Google Scholar), dimethyl yellow (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), direct red 80 (25Pollack S.J. Sadler II, Hawtin S.R. Tailor V.J. Shearman M.S. Neurosci. Lett. 1995; 197: 211-214Crossref PubMed Scopus (83) Google Scholar), 2,2′-dihydroxybenzophenone (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), hexadecyltrimethylammonium bromide (C16) (9Sabate R. Estelrich J. Langmuir. 2005; 21: 6944-6949Crossref PubMed Scopus (63) Google Scholar), hemin chloride (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar, 70Howlett D. Cutler P. Heales S. Camilleri P. FEBS Lett. 1997; 417: 249-251Crossref PubMed Scopus (96) Google Scholar), hematin (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar, 70Howlett D. Cutler P. Heales S. Camilleri P. FEBS Lett. 1997; 417: 249-251Crossref PubMed Scopus (96) Google Scholar), indomethacin (71Netland E.E. Newton J.L. Majocha R.E. Tate B.A. Neurobiol. Aging. 1998; 19: 201-204Crossref PubMed Scopus (86) Google Scholar), juglone (72Wang J. Gines S. MacDonald M.E. Gusella J.F. BMC Neurosci. 2005; 6: 1-12Crossref PubMed Scopus (94) Google Scholar), lacmoid (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), meclocycline sulfosalicylate (72Wang J. Gines S. MacDonald M.E. Gusella J.F. BMC Neurosci. 2005; 6: 1-12Crossref PubMed Scopus (94) Google Scholar), melatonin (18Pappolla M. Bozner P. Soto C. Shao H. Robakis N.K. Zagorski M. Frangione B. Ghiso J. J. Biol. Chem. 1998; 273: 7185-7188Abstract Full Text Full Text PDF PubMed Scopus (295) Google Scholar), myricetin (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), 1,2-naphthoquinone (16Tomiyama T. Asano S. Suwa Y. Morita T. Kataoka K. Mori H. Endo N. Biochem. Biophys. Res. Commun. 1994; 204: 76-83Crossref PubMed Scopus (148) Google Scholar), nordihydroguaiaretic acid (11Ono K. Hasegawa K. Naiki H. Yamada M. J. Neurosci. Res. 2004; 75: 742-750Crossref PubMed Scopus (780) Google Scholar), R(–)-norapomorphine hydrobromide (19Lashuel H.A. Hartley D.M. Balakhaneh D. Aggarwal A. Teichberg S. Callaway D.J. J. Biol. Chem. 2002; 277: 42881-42890Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar), orange G (25Pollack S.J. Sadler II, Hawtin S.R. Tailor V.J. Shearman M.S. Neurosci. Lett. 1995; 197: 211-214Crossref PubMed Scopus (83) Google Scholar), o-vanillin (2-hydroxy-3-methoxybenzaldehyde) (24De Felice F.G. Vieira M.N. Saraiva L.M. Figueroa-Villar J.D. Garcia-Abreu J. Liu R. Chang L. Klein W.L. Ferreira S.T. FASEB J. 2004; 18: 1366-1372Crossref PubMed Scopus (168) Google Scholar), pherphenazine (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), phthalocyanine (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar), rifamycin SV (16Tomiyama T. Asano S. Suwa Y. Morita T. Kataoka K. Mori H. Endo N. Biochem. Biophys. Res. Commun. 1994; 204: 76-83Crossref PubMed Scopus (148) Google Scholar, 62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstract Full Text Full Text PDF PubMed Scopus (405) Google Scholar, 73Tomiyama T. Shoji A. Kataoka K. Suwa Y. Asano S. Kaneko H. Endo N. J. Biol. Chem. 1996; 271: 6839-6844Abstract Full Text Full Text PDF PubMed Scopus (279) Google Scholar), phenol red (74Porat Y. Mazor Y. Efrat S. Gazit E. Biochemistry. 2004; 43: 14454-14462Crossref PubMed Scopus (176) Google Scholar), rolitetracycline (15Howlett D.R. George A.R. Owen D.E. Ward R.V. Markwell R.E. Biochem. J. 1999; 343: 419-423Crossref PubMed Scopus (129) Google Scholar, 20Howlett D.R. Perry A.E. Godfrey F. Swatton J.E. Jennings K.H. Spitzfaden C. Wadsworth H. Wood S.J. Markwell R.E. Biochem. J. 1999; 340: 283-289Crossref PubMed Scopus (186) Google Scholar), quinacrine mustard dihydrochloride (62Taniguchi S. Suzuki N. Masuda M. Hisanaga S. Iwatsubo T. Goedert M. Hasegawa M. J. Biol. Chem. 2005; 280: 7614-7623Abstr
Referência(s)