Revisão Revisado por pares

Metabolic consequences of enzyme interactions

1996; Wiley; Volume: 14; Issue: 4 Linguagem: Inglês

10.1002/cbf.699

ISSN

1099-0844

Autores

Judit Ovádi, Paul A. Srere,

Tópico(s)

Metabolism and Genetic Disorders

Resumo

Cell Biochemistry and FunctionVolume 14, Issue 4 p. 249-258 Synoptic Review Metabolic consequences of enzyme interactions Judit Ovádi, Judit Ovádi Institute of Enzymology Biological Research Centre, Hungarian Academy of Science, Budapest H-1518, P. O. Box 7, HungarySearch for more papers by this authorPaul A. Srere, Corresponding Author Paul A. Srere Research Service of the Department of Veterans Affairs Medical Center and Department of Biochemistry of the University of Texas Southwestern Medical Center at Dallas, 4500 S. Lancaster Rd., Dallas, TX 75216, U.S.A.Research Service of the Department of Veterans Affairs Medical Center and Department of Biochemistry of the University of Texas Southwestern Medical Center at Dallas, 4500 S. Lancaster Rd., Dallas, TX 75216, U.S.A.Search for more papers by this author Judit Ovádi, Judit Ovádi Institute of Enzymology Biological Research Centre, Hungarian Academy of Science, Budapest H-1518, P. O. Box 7, HungarySearch for more papers by this authorPaul A. Srere, Corresponding Author Paul A. Srere Research Service of the Department of Veterans Affairs Medical Center and Department of Biochemistry of the University of Texas Southwestern Medical Center at Dallas, 4500 S. Lancaster Rd., Dallas, TX 75216, U.S.A.Research Service of the Department of Veterans Affairs Medical Center and Department of Biochemistry of the University of Texas Southwestern Medical Center at Dallas, 4500 S. Lancaster Rd., Dallas, TX 75216, U.S.A.Search for more papers by this author First published: December 1996 https://doi.org/10.1002/cbf.699Citations: 43AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Srere, P. A. (1967). Enzyme concentrations in tissues. Science, 158, 936–937. 10.1126/science.158.3803.936 CASPubMedWeb of Science®Google Scholar 2 Srere, P. A. (1982). The structure of the mitochondrial inner membrane–matrix component. Trends Biochem. Sci., 7, 373–378. 10.1016/0968-0004(82)90119-0 Web of Science®Google Scholar 3 Luby-Phelps, K. (1994). Constraints on diffusion in the cytoplasm of living cells. Comments Mol. Cell. Biophys., 8, 199–216. Google Scholar 4 Jacobson, K., O'Dell, D. and August, J. (1984). Lateral diffusion of an 80000-dalton glycoprotein in plasma membrane of murine fibroblasts: Relationship to cell structure and function. J. Cell Biol., 99, 1624–1633. 10.1083/jcb.99.5.1624 CASPubMedWeb of Science®Google Scholar 5 Minton, A. P. and Wilf, J. (1981). Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry, 20, 4821–4826. 10.1021/bi00520a003 CASPubMedWeb of Science®Google Scholar 6 Sitte, P. (1980). In: Cell Compartmentation and Metabolic Channelling. ( L. Nover, F. Lynen and K. Mothes, eds.) Elsevier, North-Holland: New York and Amsterdam, pp. 17–32. Google Scholar 7 Srere, P. A. (1972). Is there an organization of Krebs cycle enzymes in the mitochondrial matrix? In: Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria. ( M. A. Mehlman and R. W. Hansen, eds.) Academic Press: New York, pp. 79–91. 10.1016/B978-0-12-487850-1.50011-7 Google Scholar 8 Clegg, J. S. (1984). Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol., 246, R133–R151. CASPubMedWeb of Science®Google Scholar 9 Welch, G. R. (1977). On the role of organized multienzyme systems in cellular metabolism: a general synthesis. Prog. Biophys. Molec. Biol., 32, 103–191. 10.1016/0079-6107(78)90019-6 CASPubMedWeb of Science®Google Scholar 10 Watford, M. (1990). A 'swell' way to regulate metabolism. Trends Biochem. Sci. 15, 329–330. 10.1016/0968-0004(90)90065-J CASPubMedWeb of Science®Google Scholar 11 Kispál, G., Evans, C. T., Malloy, C. and Srere, P. A. (1989). Metabolic studies on citrate synthase mutants of yeast. J. Biol. Chem., 264, 11204–11210. CASPubMedWeb of Science®Google Scholar 12 Súmegi, B., Porpaczy, Z., McCammon, M. T., Sherry, A. D., Malloy, C. R. and Srere, P. A. (1992). Regulatory consequences of organization of citric acid cycle enzymes. Curr. Top. Cell. Regul., 33, 249–260. 10.1016/B978-0-12-152833-1.50019-8 PubMedWeb of Science®Google Scholar 13 Srere, P. A. (1987). Complexes of sequential metabolic enzymes. Annu. Rev. Biochem., 56, 89–124. 10.1146/annurev.bi.56.070187.000513 CASPubMedWeb of Science®Google Scholar 14 Srivastava, D. K. (1991). Physiological constraints on evolution of enzymes for cellular metabolic pathways. J. Theor. Biol., 152, 93–101. 10.1016/S0022-5193(05)80518-1 CASPubMedWeb of Science®Google Scholar 15 Ovádi, J. (1988). Old pathway – new concept. Control of glycolysis by metabolite-mediated dynamic enzyme associations. Trends in Biochem. Sci., 13, 486–490. 10.1016/0968-0004(88)90237-X CASPubMedWeb of Science®Google Scholar 16 Ureta, T. (1978). The role of isozymes in metabolism: A model of metabolic pathways as the basis for the biological role of isozymes. Curr. Top. Cell. Reg., 13, 233–251. 10.1016/B978-0-12-152813-3.50011-2 CASPubMedGoogle Scholar 17 Somero, G. N. and Hand, S. C. (1990). Protein assembly and metabolic regulation: physiological and evolutionary perspectives. Physiol. Zool., 63, 443–471. 10.1086/physzool.63.3.30156222 CASWeb of Science®Google Scholar 18 Lehotzky, A., Telegdi, M., Liliom, K. and Ovádi, J. (1993). Interaction of phosphofructokinase with tubulin and microtubule: quantitative evaluation of the mutual effects. J. Biol. Chem., 268, 10888–10894. CASPubMedWeb of Science®Google Scholar 19 Vértessy, B. G., Kovács, J. and Ovádi, J. (1996). Specific characteristics of phosphofructokinase-microtubule interaction. FEBS Lett., in press. Google Scholar 20 Reed, L. J. (1974). Multienzyme complexes. Acc. Chem. Res., 7, 40–46. 10.1021/ar50074a002 CASWeb of Science®Google Scholar 21 Lynen, F. (1964). Coordination of metabolic proceses by multienzyme complexes. In: New Perspectives in Biology. ( M. Sea, ed.) Elsevier: Amsterdam, pp. 132–146. Google Scholar 22 Ricard, J. and Noat, G. (1984). Enzyme reactions at the surface of living cells. II. Destabilization in the membranes and conduction of signals. J. Theor. Biol., 109, 571. 10.1016/S0022-5193(84)80159-9 CASPubMedWeb of Science®Google Scholar 23 Ricard, J. (1994). Coordination of catalytic activities within enzyme complexes. Eur. J. Biochem., 220, 955–961. 10.1111/j.1432-1033.1994.tb18699.x PubMedWeb of Science®Google Scholar 24 Friedrich, P. (1985). Dynamic compartmentation in soluble multienzyme systems. In: Organized Multienzyme Systems: Catalytic Properties. ( G. R. Welch, ed.) Academic Press: Orlando, London, pp. 141–176. 10.1016/B978-0-12-744040-8.50008-6 Google Scholar 25 Keleti, T. and Ovadi, J. (1988). Control mechanism by dynamic macromolecular interactions. Curr. Top. Cell. Regul., 29, 1–33. 10.1016/B978-0-12-152829-4.50003-3 CASPubMedWeb of Science®Google Scholar 26 Tompa, P., Batke, J. and Ovádi, J. (1987). How to determine the efficiency of intermediate transfer in an interacting enzyme system? FEBS Lett., 214, 244–248. 10.1016/0014-5793(87)80063-7 CASPubMedWeb of Science®Google Scholar 27 Ovádi, J. (1995). Cell Architecture and Metabolic Channeling. R. G. Landes Co., Springer-Verlag: Austin, Heidelberg. Google Scholar 28 Meek, T. D., Garvey, E. R. and Santi, D. V. (1985). Purification and characterization of the bifunctional thymidylate synthase–dihydrofolate reductase from methotrexate-resistant Leishmania tropica. Biochemistry, 24, 678–686. Google Scholar 29 Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W. and Davies, D. R. (1988). Three-dimensional structure of the tryptophan synthase multienzyme complex from Salmonella typhimurium. J. Biol. Chem., 263, 7857–7871. Google Scholar 30 Mattiasson, B., Johansson, A. and Mosbach, (1974). Preparation of a soluble, bifunctional enzyme aggregate and studies on its kinetic behavior in polymer media. Eur. J. Biochem., 46, 341–349. 10.1111/j.1432-1033.1974.tb03626.x CASPubMedWeb of Science®Google Scholar 31 Lindbladh, C., Persson, M., Bülow, L. and Mosbach, K. (1992). Characterization of a recombinant bifunctional enzyme, galactose dehydrogenase/bacterial luciferase, displaying an improved bioluminescence in a three-enzyme system. Eur. J. Biochem., 204, 241–247. 10.1111/j.1432-1033.1992.tb16630.x CASPubMedWeb of Science®Google Scholar 32 Bülow, L. (1987). Characterization of an artificial bifunctional enzyme, β-galactosidase/galactokinase, prepared by gene fusion. Eur. J. Biochem., 163, 443–448. 10.1111/j.1432-1033.1987.tb10889.x CASPubMedWeb of Science®Google Scholar 33 Súmegi, B., Sherry, A. D. and Malloy, C. R. (1990). Channeling of TCA cycle intermediates in cultured Saccharomyces cerevisiae. Biochemistry, 29, 9106–9110. 10.1021/bi00491a002 CASPubMedWeb of Science®Google Scholar 34 Shulman, R. G. (1991). Metabolic channeling: scrambled evidence. Trends Biochem. Sci., 16, 171. 10.1016/0968-0004(91)90066-5 CASPubMedWeb of Science®Google Scholar 35 Landau, B. R., Schumann, W. C., Chandramouli, V., Magnusson, I., Kumaran, K. and Wahren, J. (1993). 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux. Am. J. Physiol., 265, E636–E647. CASPubMedWeb of Science®Google Scholar 36 Salerno, C., Ovádi, J., Churchich, J. and Fasella, P. (1975). Interaction between transaminases and dehydrogenases. In: Proceedings of FEBS Meeting. (Keleti, T., ed.) Akadáemiai Kiadó: Budapest, pp. 147–160. Google Scholar 37 Brown, R. M. and Montezions, D. (1976). Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. U.S.A., 73, 143–147. 10.1073/pnas.73.1.143 CASPubMedWeb of Science®Google Scholar 38 Masters, C. J. (1981). Interactions between soluble enzymes and subcellular structure. CRC Crit. Rev. Biochem., 11, 105–143. 10.3109/10409238109108700 CASPubMedWeb of Science®Google Scholar 39 Masters, C. (1992). Microenviromental factors and the binding of glycolytic enzymes to contractile filaments. Int. J. Biochem., 24, 405–410. 10.1016/0020-711X(92)90031-U CASPubMedWeb of Science®Google Scholar 40 Ryazanov, A. G., Ashmarina, L. I. and Murinetz, V. I. (1988). Association of glyceraldehyde-3-phosphate dehydrogenase with mono- and polyribosomes of rabbit reticulocytes. Eur. J. Biochem., 171, 301–305. 10.1111/j.1432-1033.1988.tb13790.x CASPubMedWeb of Science®Google Scholar 41 Clarke, F. M., Morton, D. J., Stephan, P. and Weidemann, J. (1985). The functional duality of glycolytic enzymes: potential integrators of cytoplasmic structure and function. In: Cell Motility: Mechanism and Regulation. ( H. Ishikawa, S. Hatano and H. Sato, eds.) University Tokyo Press: Tokyo, pp. 235–250. Google Scholar 42 Cortassa, S. and Aon, M. A. (1994). Spatio-temporal regulation of glycolysis and oxidative phosphorylation in vivo tumor and yeast cells. Cell Biol. Int., 18, 687–713. 10.1006/cbir.1994.1099 CASPubMedWeb of Science®Google Scholar 43 Srivastava, D. K. and Bernhard, S. A. (1986). Enzymeenzyme interactions and the regulation of metabolic regulation pathways. Curr. Top. Cell. Regul., 28, 1–68. 10.1016/B978-0-12-152828-7.50003-2 CASPubMedWeb of Science®Google Scholar 44 Neuzil, J., Danielson, H., Welch, G. R. and Ovádi, J. (1990). Cooperative effect of fructose bisphosphate and glyceraldehyde-3-phosphate dehydrogenase on aldolase action. Biochem. Biophys. Acta, 1037, 307–312. 10.1016/0167-4838(90)90030-J CASPubMedWeb of Science®Google Scholar 45 Tompa, P., Batke, J., Ovádi, J., Welch, G. R. and Srere, P. A. (1987). Quantitation of the interaction between citrate synthase and malate dehydrogenase. J. Biol. Chem., 262, 6089–6092. 10.1016/S0021-9258(18)45541-X CASPubMedWeb of Science®Google Scholar 46 Hesketh, J. E. and Pryme, I. F. (1991). Interaction between mRNA, ribosomes and the cytoskeleton. Biochem. J., 277, 1–10. 10.1042/bj2770001 CASPubMedWeb of Science®Google Scholar 47 Agutter, P. S. (1990). Between Nucleus and Cytoplasm. Chapman and Hall: London. Google Scholar Citing Literature Volume14, Issue4December 1996Pages 249-258 ReferencesRelatedInformation

Referência(s)