Artigo Revisado por pares

Ag 7 Au 6 : A 13‐Atom Alloy Quantum Cluster

2012; Wiley; Volume: 51; Issue: 9 Linguagem: Inglês

10.1002/anie.201107696

ISSN

1521-3773

Autores

Udayabhaskararao Thumu, Yan Sun, Nirmal Goswami, Samir Kumar Pal, K. Balasubramanian, Thalappil Pradeep,

Tópico(s)

Gold and Silver Nanoparticles Synthesis and Applications

Resumo

Angewandte Chemie International EditionVolume 51, Issue 9 p. 2155-2159 Communication Ag7Au6: A 13-Atom Alloy Quantum Cluster† Thumu Udayabhaskararao, Thumu Udayabhaskararao DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036 (India)Search for more papers by this authorYan Sun, Yan Sun College of Science, California State University, East Bay, Hayward, CA 94542 (USA)Search for more papers by this authorNirmal Goswami, Nirmal Goswami Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)Search for more papers by this authorSamir K. Pal, Samir K. Pal Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)Search for more papers by this authorK. Balasubramanian, K. Balasubramanian College of Science, California State University, East Bay, Hayward, CA 94542 (USA) Chemistry and Material Science Directorate Lawrence Livermore National Laboratory, Livermore, CA 94550 (USA) Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)Search for more papers by this authorProf. Thalappil Pradeep, Corresponding Author Prof. Thalappil Pradeep [email protected] DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036 (India)DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036 (India)Search for more papers by this author Thumu Udayabhaskararao, Thumu Udayabhaskararao DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036 (India)Search for more papers by this authorYan Sun, Yan Sun College of Science, California State University, East Bay, Hayward, CA 94542 (USA)Search for more papers by this authorNirmal Goswami, Nirmal Goswami Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)Search for more papers by this authorSamir K. Pal, Samir K. Pal Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)Search for more papers by this authorK. Balasubramanian, K. Balasubramanian College of Science, California State University, East Bay, Hayward, CA 94542 (USA) Chemistry and Material Science Directorate Lawrence Livermore National Laboratory, Livermore, CA 94550 (USA) Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)Search for more papers by this authorProf. Thalappil Pradeep, Corresponding Author Prof. Thalappil Pradeep [email protected] DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036 (India)DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036 (India)Search for more papers by this author First published: 20 January 2012 https://doi.org/10.1002/anie.201107696Citations: 208 † We thank the Department of Science and Technology, Government of India for constantly supporting our research program on nanomaterials. This research was supported in part by the U.S. Department of Energy under grant number DE-FG02-05ER15657 and in part by the Department of Homeland Security's collaborative academic research program. The work at LLNL was performed under the auspices of the U.S. Department of Energy. The authors would like to acknowledge computational support on Lawrence Berkeley Lab's National Energy Research Supercomputers (NERSC). Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract An alloy cluster containing a 13-atom core, with a composition Ag7Au6(H2MSA)10 (H2MSA=mercaptosuccinic acid) was synthesized from silver clusters by a galvanic exchange reaction. The clusters were characterized by several spectroscopic and microscopic methods. The alloy cluster shows luminescence with a quantum yield of 3.5×10−2 at room temperature. Theoretical calculations for Ag7Au6(SCH3)10 suggest a distorted icosahedral core. Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description anie_201107696_sm_miscellaneous_information.pdf5 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1aP. A. Bartlett, B. Bauer, S. J. Singer, J. Am. Chem. Soc. 1978, 100, 5085; 1bC. E. Briant, B. R. C. Theobald, J. W. White, C. K. Bell, D. M. P. Mingos, A. J. Welch, J. Chem. Soc. Chem. Commun. 1981, 201; 1cJ. W. A. van der Velden, F. A. Vollenbroek, J. J. Bour, P. T. Beurskens, J. M. M. Smits, W. P. Bosman, Recl. J. R. Neth. Chem. Soc. 1981, 100, 148; 1dG. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer, G. H. M. Calis, J. W. A. Van der Velden, Chem. Ber. 1981, 114, 3634. 2L. F. Chi, M. Hartig, T. Drechsler, T. Schwaack, C. Seidel, H. Fuchs, G. Schmid, Appl. Phys. A 1998, 66, S 187. 3 3aR. Jin, Nanoscale 2010, 2, 343, and references therein; 3bP. L. Xavier, K. Chaudhari, P. K. Verma, S. K. Pal, T. Pradeep, Nanoscale 2010, 2, 2769; 3cM. A. Habeeb Muhammed, P. K. Verma, S. K. Pal, R. C. Arun Kumar, S. Paul, R. V. Omkumar, T. Pradeep, Chem. Eur. J. 2009, 15, 10110; 3dE. S. Shibu, B. Radha, P. K. Verma, P. Bhyrappa, G. U. Kulkarni, S. K. Pal, T. Pradeep, ACS Appl. Mater. Interfaces 2009, 1, 2199; 3eH. Qian, Y. Zhu, R. Jin, J. Am. Chem. Soc. 2010, 132, 4583; 3fM. A. Habeeb Muhammed, T. Pradeep, Chem. Phys. Lett. 2007, 449, 186; 3gP. Ramasamy, S. Guha, E. S. Shibu, T. S. Sreeprasad, S. Bag, A. Banerjee, T. Pradeep, J. Mater. Chem. 2009, 19, 8456; 3hE. S. Shibu, M. A. Habeeb Muhammed, T. Tsukuda, T. Pradeep, J. Phys. Chem. C 2008, 112, 12168. 4C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Kall, J. Phys. Chem. B 2003, 107, 7337. 5 5aA. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, Nano Lett. 2007, 7, 1929; 5bA. Verma, O. Uzun, Y. H. Hu, Y. Hu, H. S. Han, N. Watson, S. L. Chen, D. J. Irvine, F. Stellacci, Nat. Mater. 2008, 7, 588. 6Y. Zhu, H. Qian, B. A. Drake, R. Jin, Angew. Chem. 2010, 122, 1317; Angew. Chem. Int. Ed. 2010, 49, 1295. 7 7aG. Ramakrishna, O. Varnavski, J. Kim, D. Lee, T. Goodson, J. Am. Chem. Soc. 2008, 130, 5032; 7bJ. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, R. M. Dickson, Phys. Rev. Lett. 2004, 93, 147402; 7cM. A. Habeeb Muhammed, A. K. Shaw, S. K. Pal, T. Pradeep, J. Phys. Chem. C 2008, 112, 14324; 7dN. Sakai, T. Tatsuma, Adv. Mater. 2010, 22, 3185. 8H. Häkkinen, Chem. Soc. Rev. 2008, 37, 1847. 9 9aP. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 2007, 318, 430; 9bM. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, J. Am. Chem. Soc. 2008, 130, 3754. 10 10aO. M. Bakr, V. Amendola, C. M. Aikens, W. Wenselers, R. Li, L. D. Negro, G. C. Schatz, F. Stellacci, Angew. Chem. 2009, 121, 6035; Angew. Chem. Int. Ed. 2009, 48, 5921; 10bZ. Wu, E. Lanni, W. Chen, M. E. Bier, D. H. Ly, R. Jin, J. Am. Chem. Soc. 2009, 131, 16672; 10cN. Nishida, H. Yao, T. Ueda, A. Sasaki, K. Kimura, Chem. Mater. 2007, 19, 2831; 10dT. Udaya Bhaskara Rao, T. Pradeep, Angew. Chem. 2010, 122, 4017; Angew. Chem. Int. Ed. 2010, 49, 3925; 10eH. Yao, M. Saeki, K. Kimura, J. Phys. Chem. C 2010, 114, 15909; 10fK. V. Mrudula, T. Udaya Bhaskara Rao, T. Pradeep, J. Mater. Chem. 2009, 19, 4335; 10gN. Cathcart, V. Kitaev, J. Phys. Chem. C 2010, 114, 16010; 10hT. U. B. Rao, B. Nataraju, T. Pradeep, J. Am. Chem. Soc. 2010, 132, 16307; 10iS. Kumar, M. D. Bolan, T. P. Bigioni, J. Am. Chem. Soc. 2010, 132, 1314; 10jI. Díez, R. H. A. Ras, Nanoscale 2011, 3, 1963; 10kI. Diez, H. Jiang, R. H. A. Ras, ChemPhysChem 2010, 11, 3100; 10lI. Dez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A. S. Goldmann, A. H. E. Muller, O. Ikkala, R. H. A. Ras, Angew. Chem. 2009, 121, 2156; Angew. Chem. Int. Ed. 2009, 48, 2122. 11 11aC. A. Fields-Zinna, M. C. Crowe, A. Dass, J. E. F. Weaver, R. W. Murray, Langmuir 2009, 25, 7704; 11bY. Negishi, W. Kurashige, Y. Niihori, T. Iwasa, K. Nobusada, Phys. Chem. Chem. Phys. 2010, 12, 6219; 11cY. Negishi, T. Iwai, M. Ide, Chem. Commun. 2010, 46, 4713; 11dC. Kumara, A. Dass, Nanoscale 2011, 3, 3064; 11eH. Qian, E. Barry, Y. Zhu, R. Jin, Acta Phys. Chim. Sin. 2011, 27, 513. 12 12aG. M. Concepcion, A. Laguna, Chem. Soc. Rev. 2008, 37, 1952; 12bA. Laguna, T. Lasanta, J. M. López-de-Luzuriaga, M. Monge, P. Naumo, M. E. Olmos, J. Am. Chem. Soc. 2010, 132, 456. 13L. D. Menard, S.-P. Gao, H. Xu, R. D. Twesten, A. S. Harper, G. Wang, A. D. Douglas, J. C. Yang, A. I. Frenkel, R. G. Nuzzo, R. W. Murray, J. Phys. Chem. B 2006, 110, 12874. 14M. S. Bootharaju, T. Pradeep, Langmuir 2011, 27, 8134. 15Z. Wu, R. Jin, Nano Lett. 2010, 10, 2568. 16 16aY.-S. Shon, G. B. Dawson, M. Porter, R. W. Murray, Langmuir 2002, 18, 3880; 16bT. Huang, R. W. Murray, J. Phys. Chem. B 2003, 107, 7434. 17 17aN. Sandhyarani, M. P. Antony, G. Panneer Selvam, T. Pradeep, J. Chem. Phys. 2000, 113, 9794; 17bI. G. Dance, K. J. Fisher, R. M. H. Banda, M. L. Scudder, Inorg. Chem. 1991, 30, 183. 18W. Nowicki, G. Nowicka, J. Chem. Educ. 1994, 71, 624. Citing Literature Volume51, Issue9February 27, 2012Pages 2155-2159 ReferencesRelatedInformation

Referência(s)