Velocity measurements on the opening of the furane ring in hydroxy‐methylfurfuraldehyde

1930; Royal Netherlands Chemical Society; Volume: 49; Issue: 9 Linguagem: Inglês

10.1002/recl.19300490902

ISSN

1878-7096

Autores

H. P. Teunissen,

Tópico(s)

Molecular spectroscopy and chirality

Resumo

Recueil des Travaux Chimiques des Pays-BasVolume 49, Issue 9 p. 784-826 Articles Velocity measurements on the opening of the furane ring in hydroxy-methylfurfuraldehyde H. P. Teunissen, H. P. Teunissen Leiden, Organic Chemical Laboratory of the University Part of Dissertation, Leiden, 1929.Search for more papers by this author H. P. Teunissen, H. P. Teunissen Leiden, Organic Chemical Laboratory of the University Part of Dissertation, Leiden, 1929.Search for more papers by this author First published: 1930 https://doi.org/10.1002/recl.19300490902Citations: 34 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Part of Dissertation, Leiden, 1929. Google Scholar 2 Furfuraldehyde was first mentioned in Ann. 35, 301 (1840), and Google Scholar methylfurfur-aldehyde in Ann. 74, 284 (1850), both by J. Stenhouse. Google Scholar 3 G. Düll, Chem. Ztg. 19, 166. 216 (1895). CASGoogle Scholar 4 J. Kiermayer, Chem. Ztg. 19, 1003 (1895); CASGoogle Scholar lnaug. Dissert., Basle, 1895. Google Scholar 5 J. A. Middendorp, Diss. Leiden, 1917; Google Scholar This Journal 38, 1 (1919); Google Scholar see also Z. Ver. deut. Zucker-Ind. 1924, 338. Google Scholar 6 W. Alberda van Ekenstein and J. J. Blanksma, Chem. Weekblad 6, 217 (1909); Google Scholar Chem. Weekblad 6, 1047 (1909); Google Scholar Chem. Weekblad 7, 387 (1910); Google Scholar Chem. Weekblad 8, 313 (1911); Google Scholar Ber. 43, 2355 (1910); 10.1002/cber.191004302202 Google Scholar This Journal 29, 403 (1910). Google Scholar 7 Chem. Weekblad 6, 1051 (1909); Google Scholar Ber. 43, 2361 (1910). Google Scholar 8 loc. cit. Google Scholar 9 loc. Google Scholar 10 Dissertation Leiden, 1929, pp. 10–80. Google Scholar 11 E. Pinoff, Ber. 38, 766, 3314 (1905). 10.1002/cber.190503801127 CASGoogle Scholar 12 T. Weehuizen, Pharm. Weekblad 55, 77, 831 (1918); CASGoogle Scholar This Journal 37, 302 (1918). Google Scholar 13 Dissertation Leiden, 1929, pp. 80–113. Google Scholar 14 G. Düll, Chem. Ztg. 19, 166, 216 (1895). CASGoogle Scholar 15 J. Kiermeyer, Chem. Ztg. 19, 1003 (1895). Google Scholar 16 J. J. Blanksma, Chem. Weekblad 6, 218 (1909): Google Scholar Ber. 43, 2355 (1910). 10.1002/cber.191004302202 Google Scholar 17 J. A. Middendorp, Diss. Leiden, 1917, pp. 22–24: Google Scholar This Journal 38, 5 (1919); Google Scholar Chem. Zentr. 90, I, 844 (1919). Google Scholar 18 The high vacuum may be attained by means of a vacuum pump instead of cocoanut charcoal cooled in liquid air; see E. Troje, Diss. Halle, 1926; Google Scholar Z. Ver. deut. Zucker-Ind. 1925, p. 635; Google Scholar Chem. Zentr. 97, II, 1891 (1926); Google Scholar see also E. Erdmann, Ber. 43, 2391 (1910). 10.1002/cber.191004302207 CASGoogle Scholar 19 J. A. Middendorp, loc. cit. Google Scholar 20 Z. Ver. deut. Zucker-Ind. 1924, 338; Google Scholar Chem. Zentr. 95, II, 1465 (1924). Google Scholar 21 Meyer and Jacobson, Lehrb. d. org. Chem, 2. Aufl., II, 3, 63 (1920). PubMedGoogle Scholar 22 Paul Karrer, Lehrb. d. org. Chem., Leipzig, 1928, p. 709. Google Scholar 23 E. Erdmann, Ber. 43, 2396 (1910). Google Scholar 24 Kurt Hess, Die Chemie der Zellulose und ihrer Beglerter, Leipzig, 1928, p. 111 (footnote), 116, 119, 490 Google Scholar 25 E. Heuser, Lehrb d. Cellulosechemie, Berlin, 1927, p. 211. Google Scholar 26 Generalregister V (1919–1921) des Chem Zentralblatt, Autorenregister, p. 536, Google Scholar Middendorp and Sachregister, p. 1889, Oxymethylfurfurol. Google Scholar 27 T. Reichstein, Helv. Chim. Acta 9, 1066 (1926). 10.1002/hlca.192600901141 CASWeb of Science®Google Scholar 28 Blanksma, Helv. Chim. Acta 10, 67 (1927). 10.1002/hlca.19270100108 CASGoogle Scholar 29 Kiermeyer, loc. cit. Google Scholar 30 Middendorp, This Journal 38, 4 (1919). Google Scholar 31 Erdmann, loc. cit. p. 2393. Google Scholar 32 H. I. H. Fenton and Miss M. Gostling, J. Chem. Soc. 73, 554 (1898); 10.1039/ct8987300554 CASGoogle Scholar J. Chem. Soc. 75, 423 (1899); 10.1039/ct8997500423 CASGoogle Scholar J. Chem. Soc. 79, 361, 807 (1901); 10.1039/ct9017900361 Google Scholar compare Ber. 43, 2795 (1910). 10.1002/cber.19100430337 Google Scholar 33 Kiermayer, loc. cit. p. 1004. Google Scholar 34 J. J. Blanksma, Chem. Weekblad 6, 1051 (1909); Google Scholar compare Ber. 43, 2361 (1910). Google Scholar 35 E. Erdmann, Ber. p. 2391. Google Scholar 36 E. Heuser and W. Schott, Cellulosechemie 4, 85 (1923); CASGoogle Scholar Z. Ver. deut. Zucker-Ind. 1924, 430; Google Scholar see K. Hess, Chem. Zellulose, 1928. p. 490 (footnote). Google Scholar 37 For example, Meyer and Jacobson, Lehrb. d. org. Chem., 2nd. Edition, II, 3, 63 (1920). PubMedGoogle Scholar 38 Ch. Tanake, Sexagint (Collection of papers dedicated to Osaka), Kyoto, 1927, 13; Google Scholar Chem. Zentr. 99, I, 2080 (1928). Google Scholar 39 Chem. Ztg. 19, 166, 216, 1003 (1895). Google Scholar 40 J. Marcusson, Z. angew. Chem. 32, 114 (1919); Google Scholar Ber. 54, 542 (1921); 10.1002/cber.19210540322 Web of Science®Google Scholar compare Z. angew. Chem. 34, 289 (1921). 10.1002/ange.19210345102 CASGoogle Scholar 41 Meyer and Jacobson, Lehrb. d. org. Chem., 2nd. Edition. II, 3, 63 (1920); PubMedGoogle Scholar compare Alberda, van Ekenstein and Blanksma, Ber. 43, 2355 (1910); 10.1002/cber.191004302202 Google Scholar Middendorp, Diss. Leiden, 1917, p. 36; Google Scholar This Journal 38, 11 (1919). Google Scholar 42 G. J. Mulder, Bull, scienc. phys. et natur. en neerl. 1840, p. 1: Google Scholar J. prakt. Chem. I, 21, 230 (1840); Google Scholar Ann. 36, 243, 260 (1840). Google Scholar 43 Tollens and von Grote, Ber. 6, 1390 (1873); 10.1002/cber.187300601182 Google Scholar Ann. 175, 181 (1875); Google Scholar Ber. 10, 1440 (1877); 10.1002/cber.18770100241 Google Scholar Ann. 198, 228, 240 (1879); Google Scholar von Grote, Tollens and Kehrer, Ann. 206, 207 (1881). Google Scholar 44 Kent and Tollens, Ann. 227, 228 (1885); Google Scholar Wehmer and Tollens, Ann. 243, 314 (1888). Google Scholar 45 M. Conrad and M. Guthzeit, Ber. 18, 439, 2905 (1885); 10.1002/cber.18850180194 Google Scholar Ber. 19, 2569, 2575 (1886). 10.1002/cber.188601902212 Google Scholar 46 Alberda van Ekenstein and Blanksma, Chem. Weekblad 7, 387 (1910). Google Scholar 47 H. Franzen and G. Greve, J. prakt. Chem. N. F. 80, 368. 383 (1909). 10.1002/prac.19090800130 Google Scholar 48 H. Fincke, Z. Nabr. Genussm. 21, 1 (1911); CASGoogle Scholar Z. Nabr. Genussm. 22, 88 (1911); Google Scholar Z. Nabr. Genussm. 23, 255 (1912); Google Scholar Biochem. Z. 51, 253 (1913). CASWeb of Science®Google Scholar 49 B. Savarè, Gazz. chim. ital. 36, II, 345 (1906). Google Scholar 50 Beilstein's Handbuch d. org. Chemie, 4. Aufl. III, 673 (1921). Google Scholar 51 A. Astruc and H. Murco, Compt. rend. 131, 943 (1900). CASGoogle Scholar 52 B. Tollens, Ber. 14, 1950 (1881). 10.1002/cber.18810140294 Google Scholar 53 B. Savarè, loc. cit., p. 346. Google Scholar 54 Rôsenthaler, Nachweis organ. Verbindungen, 329–331 (1914). Google Scholar 55 Savarè, loc. cit. p. 345. Google Scholar 56 J. Messinger, Bestimmung von Azeton, Ber. 21, 3366 (1888). Google Scholar 57 The 25.45 cm3 0.1 n NaOH introduced into the calculation at this stage is due to the sulphuric acid added at the beginning of the experiment. Google Scholar 58 It follows from the titration figures that no appreciable amount of the hydrochloric acid present passes over in the distillation. Google Scholar 59 All the remaining cases of furane ring opening are discussed in the author's dissertation, Leiden, 1929, p. 10–80. Google Scholar 60 J. Marcusson, Z. angew. Chem. 32, 114 (1919); Google Scholar Ber. 54, 542 (1923). Google Scholar 61 K. G. Jonas, Z. angew. Chem. 34, 289 (1921). 10.1002/ange.19210345102 CASGoogle Scholar 62 H. Simonis, Ber. 32, 2084 (1899). 10.1002/cber.189903202122 CASGoogle Scholar 63 Simonis, loc. cit.; Google Scholar H. B. Hill and A. W. Palmer, Am. Chem. J. 9, 147 (1887). Google Scholar 64 E. Schmidt and co-workers, Ber. 55, 1529 (1922); 10.1002/cber.19220550606 Google Scholar E. Schmidt and co-workers, Ber. 58, 1394 (1925); 10.1002/cber.19250580736 Google Scholar E. Schmidt and co-workers, Ber. 60, 1671 (1927). 10.1002/cber.19270600736 Google Scholar 65 N. A. Milas, J. Am. Chem. Soc. 49, 2005 (1927). 10.1021/ja01407a024 CASGoogle Scholar 66 Cross, Bevan and Briggs Ber. 33, 3132 (1900). 10.1002/cber.19000330365 Google Scholar 67 Padoa and Ponti, Atti accad. Lincei (5) 15, II, 610 (1906): Google Scholar Gazz. chim. ital. 37, II, 105 (1907); Google Scholar Pringsheim and Noth, Ber. 53, 114 (1920). Google Scholar 68 H. Schmelz and F. Beilstein, Ann. Suppl. III, 275 (1865). Google Scholar 69 H. Limpricht, Ann. 165, 253 (1873); Google Scholar H. Fecht, Ber. 38, 1272 (1905). 10.1002/cber.19050380205 CASGoogle Scholar 70 H. B. Hill and E. T. Allen, Am. Chem. J. 19, 650 (1897). CASGoogle Scholar 71 Limpricht, Ber. 2, 211 (1869); 10.1002/cber.18690020199 Google Scholar H. B. Hill and co-workers, Am. Chem. J. 3, 33, 98, 165 (1882); Google Scholar Am. Chem. J. 4, 273 (1883); Google Scholar Am. Chem. J. 6, 187 (1885): Google Scholar Am. Chem. J. 19, 627, 641 (1897). CASGoogle Scholar 72 Schmelz and Beilstein, loc. cit.; Google Scholar Hill and Allen, loc. cit. Google Scholar 73 Ciamician and Silber, Ber. 46, 1558 (1913). 10.1002/cber.19130460246 CASGoogle Scholar 74 Limpricht and Rohde, Ann. 165, 280, 300 (1873). Google Scholar 75 von Wissell and Tollens, Ann. 272, 291 (1893). Google Scholar 76 E. Erdmann, Ber. 35, 1858 (1902). Google Scholar 77 R. Pummerer and W. Gump, Ber. 56, 999 (1923). 10.1002/cber.19230560502 Web of Science®Google Scholar 78 M. Marckwald, Ber. 20, 2811 (1887); 10.1002/cber.188702002140 CASGoogle Scholar Ber. 21, 1398 (1888). 10.1002/cber.188802101259 Google Scholar 79 J. Volhard, Ann. 253, 235 (1889). Google Scholar 80 Pummerer and Gump, loc. cit. Google Scholar 81 Not α-γ-diketo-δ-hydroxyaldehyde, as Pummerer erroneously called it. Google Scholar 82 Compare the mechanism of the opening of the ring in furfurylacrylic acid. Google Scholar 83 Pummerer and Gump, loc. cit. Google Scholar 84 G Düll, Chem.-Ztg. 19, 216 (1895). Google Scholar 85 J. Kiermeyer, Chem.-Ztg. 19, 1003 (1895). Google Scholar 86 C. Tanaka, Sexagint (Collection of Papers dedicated to Osaka), Kyoto, 1927, p. 13; Google Scholar Chem. Zentr. 99, I, 2080 (1928). Google Scholar 87 For the preparation of carbon dioxide free water see Mattaar, This Journal 41, 103 (1922). CASGoogle Scholar 88 Blanksma, Chem. Weekblad 6, 219 (1909). Google Scholar 89 Conrad and Guthzeit, Ber. 18, 439, 2905 (1885); 10.1002/cber.18850180194 Google Scholar Ber. 19, 2569, 2575, 2844 (1886). 10.1002/cber.188601902212 Google Scholar 90 G. F. M. Caudri, Dissert. Leiden, 1928. p. 58; Google Scholar Rec. trav. chim. 48, 442 (1929). Google Scholar 91 Dieckmann and Beck, Ber. 38, 4122 (1905); 10.1002/cber.19050380489 CASGoogle Scholar W. König, J. prakt. Chem. N. F. 72, 355 (1905). 10.1002/prac.19050720134 Google Scholar 92 H. Pariselle, Ann. chim. (8) 24, 361 (1911). Google Scholar 93 F. J. Nellensteyn, Chem. Weekblad 24, 102 (1927). CASGoogle Scholar 94 H. Limpricht, Ann. 165, 253 (1873). Google Scholar 95 C. Harries, Ber. 31, 37 (1898): 10.1002/cber.18980310109 CASGoogle Scholar Ber. 34, 1488 (1901); 10.1002/cber.19010340225 CASGoogle Scholar Chem.-Ztg. 24, 857 (1900). Google Scholar 96 J. Marcusson, Ber. 54, 542 (1921). 10.1002/cber.19210540322 Web of Science®Google Scholar 97 G. Dull, Chem-Ztg 19, 166, 216 (1895). CASGoogle Scholar 98 J. Kiermayer, Chem-Ztg 19, 1003 (1895); CASGoogle Scholar see also p. 791 of this article. Google Scholar 99 W. Alberda van Ekenstein and J. J. Blanksma, Chem. Weekblad 6, 217, 1047 (1909); Google Scholar Chem. Weekblad 7, 387 (1910); Google Scholar Chem. Weekblad 8, 313 (1911); Google Scholar Ber. 43, 2355 (1910); 10.1002/cber.191004302202 Google Scholar This Journal 29, 403 (1910). Google Scholar 100 J. A. Middendorp, Diss. Leiden, 1917; Google Scholar This Journal 38, 1 (1919); Google Scholar Chem. Zentr. 90, I, 844 (1919) Google Scholar 101 In 1924 a German translation of Middendorp's work was published by E. Troje, Z. Ver. deut. Zucker-Ind. 1924, 338–428. Google Scholar 102 By T. Reichstein, Helv. Chim. Acta 9, 1066 (1926). 10.1002/hlca.192600901141 CASWeb of Science®Google Scholar 103 Cf. Düll, Chem-Ztg. 19, 166 216 (1895) and CASGoogle Scholar Kiermayer, Chem-Ztg. p. 1003. Google Scholar 104 Fincke, Z. Untersuch. Nahr. Genussm. 21, I (1911); Google Scholar Biochem. Z 51, 253 (1913). CASWeb of Science®Google Scholar 105 Cf. Tollens, Ber. 14, 1950 (1881). 10.1002/cber.18810140294 Google Scholar Savarè, Gazz. chim. ital. 36, II, 344 (1906); Google Scholar Messinger, Ber. 21, 3366 (1888). 10.1002/cber.188802102222 Google Scholar 106 For a complete summary of the literature, see the author's dissertation, Leiden, 1929, Chap. 1. Google Scholar 107 Pummerer and Gump, Ber. 56, 999 (1923). 10.1002/cber.19230560502 Web of Science®Google Scholar 108 Tanaka, see Chem. Zentr. 99, I, 2080 (1928). Google Scholar Citing Literature Volume49, Issue91930Pages 784-826 ReferencesRelatedInformation

Referência(s)