Impact of Catalyst Length and Preheating on Transient Catalytic H2O2 Decomposition Performance
2015; American Institute of Aeronautics and Astronautics; Volume: 31; Issue: 3 Linguagem: Inglês
10.2514/1.b35489
ISSN1533-3876
AutoresDavid Krejci, Sebastian Schuh, Robert-Jan Koopmans, Carsten Scharlemann,
Tópico(s)Spacecraft and Cryogenic Technologies
ResumoNo AccessTechnical NoteImpact of Catalyst Length and Preheating on Transient Catalytic H2O2 Decomposition PerformanceDavid Krejci, Sebastian Schuh, Robert-Jan Koopmans and Carsten ScharlemannDavid KrejciChemical Propulsion Group, Aerospace Engineering, FOTEC GmbH, 2700 Wiener Neustadt, Austria, Sebastian SchuhChemical Propulsion Group, Aerospace Engineering, FOTEC GmbH, 2700 Wiener Neustadt, Austria, Robert-Jan KoopmansChemical Propulsion Group, Aerospace Engineering, FOTEC GmbH, 2700 Wiener Neustadt, Austria and Carsten ScharlemannAerospace Engineering Department, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, AustriaPublished Online:9 Apr 2015https://doi.org/10.2514/1.B35489SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Krejci D., Woschnak A., Scharlemann C. and Ponweiser K., "Performance Assessment of 1 N Bipropellant Thruster Using Green Propellants H2O2/Kerosene," Journal of Propulsion and Power, Vol. 29, No. 1, 2013, pp. 285–289. doi:https://doi.org/10.2514/1.B34633 JPPOEL 0748-4658 LinkGoogle Scholar[2] Scharlemann C., "Green Propellants: Global Assessment of Suitability and Applicability," Proceedings of the European Conference for Aerospace Sciences (EUCASS), Versailles, France, 2000. Google Scholar[3] Pasini A., Torre L., Romeo C. A. and d'Agostino L., "Testing and Characterization of a Hydrogen Peroxide Monopropellant Thruster," Journal of Propulsion and Power, Vol. 24, No. 3, 2008, pp. 507–515. doi:https://doi.org/10.2514/1.33121 JPPOEL 0748-4658 LinkGoogle Scholar[4] Pasini A., Torre L., Romeo C. A. and d'Agostino L., "Endurance Tests on Different Catalytic Beds for H2O2 Monopropellant Thrusters," 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2009-5472, Aug. 2009. LinkGoogle Scholar[5] Sungyong A. and Kwon S., "Catalyst Bed Sizing of 50 Newton Hydrogen Peroxide Monopropellant Thruster," 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2008-5109, 2008. Google Scholar[6] Lee J., Sungyong A. and Kwon S., "Development of a Liquid Propellant Rocket Utilizing Hydrogen Peroxide as a Monopropellant," 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2008-5110, 2008. LinkGoogle Scholar[7] Wernimont E. J., "Monopropellant Hydrogen Peroxide Rocket Systems: Optimum for Small Scale," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2006-4549, July 2006. LinkGoogle Scholar[8] Widdis S. J., Asante K., Hitt D. L., Cross M. W., Varhue W. J. and McDevitt M. R., "A MEMS-Based Catalytic Microreactor for a H2O2 Monopropellant Micropropulsion System," IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 4, 2013, pp. 1250–1258. doi:https://doi.org/10.1109/TMECH.2013.2249085 CrossrefGoogle Scholar[9] Woschnak A., Krejci D., Schiebl M. and Scharlemann C., "Development Model of a Green 1 NBi-Propellant Thruster for Attitude Control," Proceedings of the Space Propulsion Conference 2012, Bordeaux, France, 2012. Google Scholar[10] Krejci D., "Design of a Hydrogen Peroxide Based Miniaturized Bipropellant Thruster," Ph.D. Dissertation, Vienna Univ. of Technology, Vienna, 2012. Google Scholar[11] Musker A. J., "Development of a 200 Newton Bipropellant Thruster Using Heterogeneous Catalytic Reduction of Hydrogen Peroxide," Proceedings of the 4th European Conference for Aerospace Sciences (EUCASS), Saint Petersburg, Russia, 2011. Google Scholar[12] Torre L., "PULCHER—Pulsed Chemical Rocket with Green High Performance Propellants: First Year Project Overview," Proceedings of the Space Propulsion Conference, Cologne, Germany, 2014. Google Scholar[13] Sisco J. C., Austin B. L., Mok J. S. and Anderson W. E., "Autoignition of Kerosene by Decomposed Hydrogen Peroxide in a Dump-Combustor Configuration," Journal of Propulsion and Power, Vol. 21, No. 3, 2005, pp. 450–459. doi:https://doi.org/10.2514/1.5287 JPPOEL 0748-4658 LinkGoogle Scholar[14] Wernimont E. J. and Heister S. D., "Combustion Experiments in Hydrogen Peroxide/Polyethylene Hybrid Rocket with Catalytic Ignition," Journal of Propulsion and Power, Vol. 16, No. 2, 2000, pp. 318–326. doi:https://doi.org/10.2514/2.5571 JPPOEL 0748-4658 LinkGoogle Scholar[15] Bonifacio S., Festa G. and Russo Sorge A., "Novel Structured Catalysts for Hydrogen Peroxide Decomposition in Monopropellant and Hybrid Rockets," Journal of Propulsion and Power, Vol. 29, No. 5, 2013, pp. 1130–1137. doi:https://doi.org/10.2514/1.B34864 JPPOEL 0748-4658 LinkGoogle Scholar[16] Krejci D., Woschnak A., Schiebl M., Scharlemann C., Ponweiser K., Brahmi R., Batonneau Y. and Kappenstein C., "Assessment of Catalysts for Hydrogen-Peroxide-Based Thrusters in a Flow Reactor," Journal of Propulsion and Power, Vol. 29, No. 2, 2013, pp. 321–330. doi:https://doi.org/10.2514/1.B34615 JPPOEL 0748-4658 LinkGoogle Scholar[17] Bramanti C., Cervone A., Romeo L., Torre L., d'Agostino L., Musker A. J. and Saccoccia G., "Experimental Characterization of Advanced Materials for the Catalytic Decomposition of Hydrogen Peroxide," 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2006-5238, July 2006. LinkGoogle Scholar[18] Lim H., An S., Kwon S. and Rang S., "Hydrogen Peroxide Gas Generator with Dual Catalytic Beds for Nonpreheating Startup," Journal of Propulsion and Power, Vol. 23, No. 5, 2007, pp. 1147–1151. doi:https://doi.org/10.2514/1.28897 JPPOEL 0748-4658 LinkGoogle Scholar[19] Blank R. A., Pourpoint T. L., Meyer S. E., Heister S. D. and Anderson W. E., "Experimental and Theoretical Performance of High-Pressure Hydrogen Peroxide Catalyst Beds," Journal of Propulsion and Power, Vol. 28, No. 5, 2012, pp. 912–917. doi:https://doi.org/10.2514/1.B34432 JPPOEL 0748-4658 LinkGoogle Scholar[20] Krejci D., Woschnak A., Scharlemann C. and Ponweiser K., "Structural Impact of Honeycomb Catalysts on Hydrogen Peroxide Decomposition for Micro Propulsion," Chemical Engineering Research and Design, Vol. 90, No. 12, 2012, pp. 2302–2315. doi:https://doi.org/10.1016/j.cherd.2012.05.015 CERDEE 0263-8762 CrossrefGoogle Scholar[21] Schiebl M., Woschnak A., Krejci D., Winter F. and Scharlemann C., "Modeling of Jet Al-H2O2 Autoignition in a Microrocket Combustion Chamber," Journal of Propulsion and Power, Vol. 29, No. 2, 2013, pp. 385–395. doi:https://doi.org/10.2514/1.B34643 JPPOEL 0748-4658 LinkGoogle Scholar[22] Blank R. A., Pourpoint T. L. and Meyer S. E., "Experimental Study of Flow Processes and Performance of a High Pressure Hydrogen Peroxide Catalyst Bed," 43rd AIAA/ASMA/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2007-5469, July 2007. LinkGoogle Scholar[23] Cen J. W. and Xu J. L., "Performance Evaluation and Flow Visualization of a MEMS Based Vaporization Liquid Micro-Thruster," Acta Astronautica, Vol. 67, Nos. 3–4, 2010, pp. 468–482. doi:https://doi.org/10.1016/j.actaastro.2010.04.009 AASTCF 0094-5765 CrossrefGoogle Scholar[24] Kappenstein C., Pirault-Roy L., Guerin M., Wahdan T., Ali A. A., Al-Sagheer F. A. and Zaki M. I., "Monopropellant Decomposition Catalysts—5. Thermal Decomposition and Reduction of Permanganates as Models for the Preparation of Supported MnOx Catalysts," Applied Catalysis A: General, Vol. 234, No. 1, 2002, pp. 145–153. doi:https://doi.org/10.1016/S0926-860X(02)00220-X-860X(02)00220-X CrossrefGoogle Scholar[25] Pirault-Roy L., Kappenstein C., Guérin M., Eloirdi R. and Pillet N., "Hydrogen Peroxide Decomposition on Various Supported Catalysts Effect of Stabilizers," Journal of Propulsion and Power, Vol. 18, No. 6, 2002, pp. 1235–1241. doi:https://doi.org/10.2514/2.6058 JPPOEL 0748-4658 LinkGoogle Scholar[26] Amariei D., Amrousse R., Batonneau Y., Brahmi R., Kappenstein C. and Cartoixa B., "Monolithic Catalysts for the Decomposition of Energetic Compounds," Studies in Surface Science and Catalysis, Vol. 175, 2010, pp. 35–42. doi:https://doi.org/10.1016/S0167-2991(10)75005-9 SSCTDM 0167-2991 CrossrefGoogle Scholar Previous article Next article
Referência(s)