Artigo Acesso aberto Revisado por pares

Five siRNAs Targeting Three SNPs May Provide Therapy for Three-Quarters of Huntington's Disease Patients

2009; Elsevier BV; Volume: 19; Issue: 9 Linguagem: Inglês

10.1016/j.cub.2009.03.030

ISSN

1879-0445

Autores

Edith L. Pfister, Lori Kennington, Juerg Straubhaar, Sujata Wagh, Wanzhou Liu, Marian DiFiglia, G. Bernhard Landwehrmeyer, Jean‐Paul Vonsattel, Phillip D. Zamore, Neil Aronin,

Tópico(s)

RNA Research and Splicing

Resumo

Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1Xia H. Mao Q. Eliason S.L. Harper S.Q. Martins I.H. Orr H.T. Paulson H.L. Yang L. Kotin R.M. Davidson B.L. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia.Nat. Med. 2004; 10: 816-820Crossref PubMed Scopus (568) Google Scholar, 2Machida Y. Okada T. Kurosawa M. Oyama F. Ozawa K. Nukina N. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse.Biochem. Biophys. Res. Commun. 2006; 343: 190-197Crossref PubMed Scopus (111) Google Scholar, 3Wang Y.L. Liu W. Wada E. Murata M. Wada K. Kanazawa I. Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA.Neurosci. Res. 2005; 53: 241-249Crossref PubMed Scopus (151) Google Scholar, 4Xia X. Zhou H. Huang Y. Xu Z. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo.Neurobiol. Dis. 2006; 23: 578-586Crossref PubMed Scopus (87) Google Scholar, 5Xia H. Mao Q. Paulson H.L. Davidson B.L. siRNA-mediated gene silencing in vitro and in vivo.Nat. Biotechnol. 2002; 20: 1006-1010Crossref PubMed Scopus (773) Google Scholar, 6Harper S.Q. Staber P.D. He X. Eliason S.L. Martins I.H. Mao Q. Yang L. Kotin R.M. Paulson H.L. Davidson B.L. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model.Proc. Natl. Acad. Sci. USA. 2005; 102: 5820-5825Crossref PubMed Scopus (532) Google Scholar, 7DiFiglia M. Sena-Esteves M. Chase K. Sapp E. Pfister E. Sass M. Yoder J. Reeves P. Pandey R.K. Rajeev K.G. et al.Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits.Proc. Natl. Acad. Sci. USA. 2007; 104: 17204-17209Crossref PubMed Scopus (320) Google Scholar, 8Ralph G.S. Radcliffe P.A. Day D.M. Carthy J.M. Leroux M.A. Lee D.C. Wong L.F. Bilsland L.G. Greensmith L. Kingsman S.M. et al.Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model.Nat. Med. 2005; 11: 429-433Crossref PubMed Scopus (401) Google Scholar, 9Raoul C. Abbas-Terki T. Bensadoun J.C. Guillot S. Haase G. Szulc J. Henderson C.E. Aebischer P. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS.Nat. Med. 2005; 11: 423-428Crossref PubMed Scopus (377) Google Scholar]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10The Huntington's Disease Collaborative Research GroupA novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes.Cell. 1993; 72: 971-983Abstract Full Text PDF PubMed Scopus (6500) Google Scholar]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11Auerbach W. Hurlbert M.S. Hilditch-Maguire P. Wadghiri Y.Z. Wheeler V.C. Cohen S.I. Joyner A.L. MacDonald M.E. Turnbull D.H. The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin.Hum. Mol. Genet. 2001; 10: 2515-2523Crossref PubMed Scopus (86) Google Scholar, 12Cattaneo E. Zuccato C. Tartari M. Normal huntingtin function: An alternative approach to Huntington's disease.Nat. Rev. Neurosci. 2005; 6: 919-930Crossref PubMed Scopus (471) Google Scholar, 13Dragatsis I. Levine M.S. Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice.Nat. Genet. 2000; 26: 300-306Crossref PubMed Scopus (411) Google Scholar]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14Caplen N.J. Taylor J.P. Statham V.S. Tanaka F. Fire A. Morgan R.A. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference.Hum. Mol. Genet. 2002; 11: 175-184Crossref PubMed Google Scholar]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15Schwarz D.S. Ding H. Kennington L. Moore J.T. Schelter J. Burchard J. Linsley P.S. Aronin N. Xu Z. Zamore P.D. Designing siRNA that distinguish between genes that differ by a single nucleotide.PLoS Genet. 2006; 2: e140Crossref PubMed Scopus (202) Google Scholar, 16Ding H. Schwarz D.S. Keene A. Affar E.-B. Fenton L. Xia X. Shi Y. Zamore P.D. Xu Z. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis.Aging Cell. 2003; 2: 209-217Crossref PubMed Scopus (149) Google Scholar, 17Dahlgren C. Zhang H.Y. Du Q. Grahn M. Norstedt G. Wahlestedt C. Liang Z. Analysis of siRNA specificity on targets with double-nucleotide mismatches.Nucleic Acids Res. 2008; 36: e53Crossref PubMed Scopus (57) Google Scholar, 18Du Q. Thonberg H. Wang J. Wahlestedt C. Liang Z. A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites.Nucleic Acids Res. 2005; 33: 1671-1677Crossref PubMed Scopus (189) Google Scholar, 19Miller V.M. Gouvion C.M. Davidson B.L. Paulson H.L. Targeting Alzheimer's disease genes with RNA interference: An efficient strategy for silencing mutant alleles.Nucleic Acids Res. 2004; 32: 661-668Crossref PubMed Scopus (136) Google Scholar]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.

Referência(s)