Artigo Revisado por pares

Characterization of Drosophila nitric oxide synthase: a biochemical study

2003; Elsevier BV; Volume: 306; Issue: 2 Linguagem: Inglês

10.1016/s0006-291x(03)01003-9

ISSN

1090-2104

Autores

Rajib Sengupta, Rupam Sahoo, Shaeri Mukherjee, Michael Regulski, Tim Tully, Dennis J. Stuehr, Sanjay Ghosh,

Tópico(s)

Physiological and biochemical adaptations

Resumo

The heme and flavin-binding domains of Drosophila nitric oxide synthase (DNOS) were expressed in Escherichia coli using the expression vector pCW. The denatured molecular mass of the expressed protein was 152 kDa along with a proteolytically cleaved product of 121 kDa. The DNOS heme protein exhibited very low Ca2+/calmodulin-dependent NO synthase activity. The trypsin digestion patterns were different from nNOS. The full-length DNOS protein had high degree of stability against trypsin. The activity assay of trypsin-digested protein confirmed the same result. Urea dissociation profile of DNOS full-length protein showed that the reductase domain activity was much more susceptible towards urea than the oxygenase domain activity. Urea gradient gel of DNOS full-length protein established distinct transition of dissociation and unfolding in the range 3–4 M urea. Reductase domain activity of full-length DNOS protein against external electron acceptors like cytochrome c indicated slow electron transfer from FMN. The bacterial expression of DNOS full-length protein represents an important development in structure–function studies of this enzyme and comparison with other mammalian NOS enzymes which is evolutionary significant.

Referência(s)